初一数学:掌握一元一次方程的解法
![](https://www.yizhongkao.com/photo/2024/12/18/1734518343_50.jpg)
篇1:初一数学:掌握一元一次方程的解法
初一数学:掌握一元一次方程的解法:
2.1从算式到方程
2.1.1一元一次方程
含有未知数的等式叫做方程。
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2.1.2等式的性质
等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2从古老的代数书说起一元一次方程的讨论⑴
把等式一边的某项变号后移到另一边,叫做移项。
2.3从买布问题说起一元一次方程的讨论⑵
方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。
解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。
去分母:
⑴具体做法:方程两边都乘各分母的最小公倍数
⑵依据:等式性质2
⑶注意事项:①分子打上括号
②不含分母的项也要乘
2.4再探实际问题与一元一次方程
第三章 图形认识初步
3.1多姿多彩的图形
现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
3.1.1立体图形与平面图形
长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
长方形、正方形、三角形、圆等都是平面图形。
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
3.1.2点、线、面、体
几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。面有平的面和曲的面两种。
面和面相交的地方形成线。
线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
3.2直线、射线、线段
经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
直线桑一点和它一旁的部分叫做射线。
两点的所有连线中,线段最短。简单说成:两点之间,线段最短。
3.3角的度量
角也是一种基本的几何图形。
度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。
3.4角的比较与运算
3.4.1角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
3.4.2余角和补角
如果两个角的和等于90(直角),就说这两个角互为余角。
如果两个角的和等于180(平角),就说这两个角互为补角。
等角的补角相等。
等角的余角相等。
本章知识结构图
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
4.1喜爱哪种动物的同学最多全面调查举例
用划记法记录数据,正字的每一划(笔画)代表一个数据。
考察全体对象的调查属于全面调查。
4.2调查中小学生的视力情况抽样调查举例
抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。
统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。调查时,可用不同的方法获得数据。除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。
利用表格整理数据,可以帮助我们找到数据的分布规律。利用统计图表示经过整理的数据,能更直观地反映数据规律。
4.3课题学习 调查你怎样处理废电池?
调查活动主要包括以下五项步骤:
一、 设计调查问卷
⑴设计调查问卷的步骤
①确定调查目的;
②选择调查对象;
③设计调查问题
⑵设计调查问卷时要注意:
①提问不能涉及提问者的个人观点;
②不要提问人们不愿意回答的问题;
③提供的选择答案要尽可能全面;
④问题应简明;
⑤问卷应简短。
二、实施调查
将调查问卷复制足够的份数,发给被调查对象。
实施调查时要注意:
⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;
⑵告诉被调查者你收集数据的目的。
三、处理数据
根据收回的调查问卷,整理、描述和分析收集到的数据。
四、交流
根据调查结果,讨论你们小组有哪些发现和建议?
五、写一份简单的调查报告
篇2:初一数学:掌握一元一次方程的解法
1.若关于x的一元一次方程 =1的解是x=-1,则k的值是( )
A. B.1 C.- D.0
分析:本题考查基本概念方程的解
因为x=-1是关于x的一元一次方程 =1的解,
所以 ,解得k=-
例2.若方程3x-5=4和方程 的解相同,则a的值为多少?
分析:题中出现了两个方程,第一个方程中只有一个未知数x,所以可以解这个方程求得x的值;第二个方程中有a与x两个未知数,所以在没有其他条件的情况下,根本没有办法求得a与x的值,因此必须分析清楚题中的条件。因为两个方程的解相同,所以可以把第一个方程中解得x代入第二个方程,第二个方程也就转化为一元一次方程了。
解:3x-5=4, 3x=9, x=3
因为3x-5=4与方程 的解相同
所以把x=3代人 中
即 得3-3a+3=0,-3a=-6,a=2
篇3:初一数学:掌握一元一次方程的解法
只含有一个未知数、未知数的最高次数为1的等式叫做一元一次方程(linear equation in one unknown);使方程左右两边的值相等的未知数的值,叫做方程的解(solution)
方程特点
(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是1。
满足以上三点的方程,就是一元一次方程。
等式性质
等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时乘或除以一个不为零的代数式,等式仍然成立。
等式的性质三:等式两边同时乘方,等式仍然成立。
解方程都是依据等式的这三个性质。
解的定义:使方程左右两边相等的未知数的值叫做方程的解,也可以说是满足方程的一个数值
看了上文为大家整理的一元一次方程辅导资料是不是感觉轻松了许多呢?一起与同学们分享吧.
篇4:初一数学:掌握一元一次方程的解法
一元一次方程选择题解题的特点:属于客观题,是单项选择题,选项中只有一个结论是正确的,不需要解题过程,只需要用合适的方法迅速准确地作出判断即可,初一数学:掌握一元一次方程的解法选择题解题技巧内容很精彩哦:
直接法(推演法):
定义:直接从题设条件出发,运用有关的概念、定义、公理、定理、性质、公式等,使用正确的解题方法,经过严密的推理和准确的运算,得出正确的结论,然后对照题目中给出的选择项“对号入座”,作出相应的选择,这种方法称之为直接法.是一种基础的、重要的、常用的方法,一般涉及概念、性质的辨析或运算较简单的题目常用直接法.
排除法
定义:利用选择题的特征:答案唯一,来去伪存真,舍弃不符合题目要求的错误答案。途径有二种:
1)从已知条件出发,通过观察分析或推理运算各选项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论,这种方法称为排除法.
2)从选项入手,根据题设的条件与选项的关系,通过分析、推理、计算、判断,对选项进行筛选,逐步缩小范围,得到正确结果.称为反排法.
排除法常应用于条件多于一个时,先根据一些已知条件,在选择项中找出与其相矛盾的选项,予以排除,然后再根据另一些已知条件,在余下的选项中,再找出与其矛盾的选项,再予以排除,直到得出正确的选项为止.
等价转化法
定义:根据题目的条件和要求,将题目等价转化为一个容易解答的方式进行解决。在解决有关排列组合的的应用问题尤为突出.
定义法
定义:根据题目中涉及到的知识的定义出发进行解答,因此回归定义是解决问题的一种重要策略.
总结:要注意定义的成立条件或约束条件,平时要掌握定义的推导和证明过程.
直觉判断法
定义:通过平时的练习积累,可根据直觉对题目中的答案进行判断.比如一个长方形面积最小时,长与宽的关系是什么样的? 二点间的直线距离最短等.
要点:需要平时多积累、多观察、多总结.
【作业】
已知反比例函数y=-6/x,则下面列四点中在此函数图像上的是
A、(2,3)B(-2,3)C(-2,-3)D(3,2)
【提示】
根据反比例函数k=xy ,进行判断 本题中k = -6,可对选项中xy的乘积进行直接判定.
同学们都知道,解一元一次方程的通常步骤是去分母、去括号、移项、合并同类项、把系数化为1,但是对于有些具备特殊性的一元一次方程,初一数学:掌握一元一次方程的解法选择题解题技巧是其中的一个部分内容,不简单哦。
篇5:初一数学:掌握一元一次方程的解法
一元一次方程内容比较复杂,我们完全可以打破常规,灵活、巧妙地变通解题步骤,避繁就简,使解题过程简捷明了,初一数学:掌握一元一次方程的解法解应用题答题技巧,供同学们参考。
一般在解决问题时第一步就是要设出未知数,未知数的设法主要有以下几种:
1,有比较关系时,如甲比乙多8,我们一般设较小的为X,这样计算时主要用的是加法不易出错;
2,有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为X,用乘法表示其余量利于计算;
3,在分数应用题中,我们设单位\'1\'为X,
4,在有比的问题中,我们设一份数为X,
5,在有和的问题中,我们设其中任意一个为X都可以,比如说两个班共有50人.
解应用题的基本步骤有:
1,依据题目要求设出合适的未知数;
2,根据题目实际情况找出等量关系,用文字关系式表示出来;
3,依据等量关系,把关系式中的每一项用数或者未知数表示出来列出方程;
4,解方程,依据题目问题计算;
5,把方程的解代入原题目检验.
其中的难点是第二步,找出等量关系,有些题目中的关系是比较明显的,而有的则是隐含的,需要大家去用心体会,下面我给大家示例两题:
1: 爷爷与孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘?
分析:属于和的问题,所以任意设一个为X,设爷爷赢了X题,则孙子赢了(12-X)盘,题目中的等量关系是爷爷得分=孙子得分,爷爷得分用X表示,孙子得分用3(12-X)表示,所以本题方程为 X=3(12-X),解之得X=9,则12-X=12-9=3,所以爷爷赢9盘,孙子赢3盘.
2:在一只底面直径为30cm,高为8cm,的圆锥形容器中倒满水,然后将水倒入一只底面直径为10cm的圆柱形空容器里,圆柱形容器中的水有多高?
分析:本题没有明显类型所以直接设问题,设圆柱形容器中的水有X厘米,题目中的等量关系是隐含的,是圆锥形容器中的水的体积=圆柱形容器中水的体积,分别表示后有方程
1/3*3.14*(30/2)(30/2)*8=3.14(10/2)(10/2)X,解之得X=24.
理解一元一次方程的概念及一元一次方程图象特征是七年级数学一元一次方程知识点的重点内容,然后最重要的就是解题,初一数学:掌握一元一次方程的解法解应用题答题技巧希望给老师的教学带来帮助。
篇6:初一数学:掌握一元一次方程的解法
对于初一同学来说,一元一次方程是一道坎,尤其是列一元一次方程解应用题又是同学们从小学升到初中之后,一元一次方程行程问题答题模板希望对大家能有帮助!
行程问题
1行程问题中的三个基本量及其关系
路程=速度×时间S=vt
2基本类型有① 相遇问题② 追及问题下 、常见的还有相背而行行船问题、环形跑道问题。
3解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系一般情况下问题就能迎刃而解。并且还常常借助画草图来分析理解行程问题
在学习一元一次方程知识内容的过程中,一元一次方程行程问题答题模板能帮助大家更好的了解本单元的重点内容,希望大家及时阅读,顺便点击练习检测一下对本单元的掌握情况了!
篇7:初一数学:掌握一元一次方程的解法
解一元一次方程的五个步骤:
一、去分母
做法:在方程两边各项都乘以各分母的最小公倍数;
依据:等式的性质二
二、去括号
一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)
依据:乘法分配律
三、移项
做法:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)
依据:等式的性质一
四、合并同类项
做法:把方程化成ax=b(a≠0)的形式;
依据:乘法分配律(逆用乘法分配律)
五、系数化为1
做法:在方程两边都除以未知数的系数a,得到方程的解x=b/a。
依据:等式的性质二.
解方程口诀
去分母,去括号,移项时,要变号,同类项,合并好,再把系数来除掉。
同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。
同解原理
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
篇8:初一数学:掌握一元一次方程的解法
成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,小编为大家准备了初一数学第三单元辅导,希望同学们不断取得进步!
1、行程问题
基本量及关系:路程=速度时间
[典型问题]
相遇问题中的相等关系:
一个的行程+另一个的行程=两者之间的距离
追及问题中的相等关系:
追及者的行程-被追者的行程=相距的路程
顺(逆)风(水)行驶问题
顺速=V静+风(水)速
逆速=V静-风(水)速
2、销售问题
基本量:
成本(进价)、售价(实售价)、
利润(亏损额)、利润率(亏损率)
基本关系:
利润=售价-成本、亏损额=成本-售价、
利润=成本利润率亏损额=成本亏损率
3、工程问题
基本量及关系:
工作总量=工作效率工作时间
4、分配型问题
此问题中一般存在不变量,而不变量
正是列方程必不可少的一种相等关系。
精品小编为大家提供的初一数学第三单元辅导就到这里了,愿大家都能在新学期努力,丰富自己,锻炼自己。