当前位置: 首页 > 中考数学基础知识要点精讲

中考数学基础知识要点精讲

篇1:中考数学基础知识要点精讲

中考数学对基础知识要求的汇总

  第一、基础知识系统化

  看到一道题,我们要知道它在考什么,我们要明确的知道每一个知识点来源于那一部分知识。牢记每一部分知识的重点,难点以及易错点能够大大降低我们的出错率。就像看到分式方程一定要想到验根,看到一元二次方程一定要想到算一下△,看到等腰三角形一定要注意分类讨论并且想到三线合一。

  初中学过的所有知识都有着他最基础的一部分以及较难掌握的一部分,这就对应着我们中考要求中ABC三类不同的要求,我们对于每一部分知识都要做到心中有数,尤其是几何的模型,例如圆与切线当中的单切线,双切线以及三切线,相似当中的非垂直相似,双垂直相似以及三垂直相似模型,我们都要了然于胸!这才能使得我们做题的思路来得更快更清晰。

  再者,对于构造等腰三角形以及直角三角形来说,经常需要讨论谁是腰谁是底边,哪个是直角边哪个是斜边,这里系统化的方法就变得特别的重要了。为了保证讨论的情况不丢不落,必须要按照一定的原则进行划分,否则拼拼凑凑就有可能有丢的有重复的。因此,我们一定要学会对于基本题型的总结,对于基本知识点的归纳,以保证我们做题的顺畅与严谨。

  第二、基础知识全面化

  为什么这个重要,因为全面化的知识能给我们提供更多的思路和更宽的解题空间。比如说三角形中重要的线段,很多同学都会说角平分线,中线和高,那么实际上还有一条非常重要的线段——中位线。这条线段尽管不是和前三条一起讲的但是在求解三角形的问题当中经常会用到,那么如果我们做题当中意识不到三角形中位线的问题,那么很可能就做不出辅助线。

  因此将知识点规整在一个整体当中是非常有利于我们进行联想和应用的。再比如,求解线段长,都能用到什么方法,大部分同学都能说出很多种,例如勾股定理,相似三角形,全等三角形,三角函数,特殊三角形的性质等等,但是诸如面积法,以及构造平行四边形等方法却经常被遗忘。这就是归纳方法的不彻底,而后者往往是解决综合题中有可能会用到的方法,所以归纳的彻底相当的重要。

  再例如证明题中推导角度的问题,除了大家一直比较敏感的三线八角,在我们学过相似和全等之后,便经常习惯于用这几种方法求解角与角的关系,而事实上还有两个非常重要的方法最容易被忽略,一是“三角形内角和=180°”二是“三角形的一个外角等于与他不相邻的两个内角之和”,干瞪眼就是看不出来这是外角的同学大有人在,所以,在学过的知识逐渐变得丰富之后,我们要善于整理,把学过的每一个知识点整理到一起,串成线,吊起来一串圆,要能够知道里面一共有多少个定理,多少种提醒常见的题型;吊起一串直角,要想到什么地方能够见到直角,直角三角形有什么性质和作用。所以大家要全面总结每一部分考点涉及到的知识,每一种知识涉及到的解题方法。这样才能保证我们思路开阔,方法灵活,不至于说看一道题能想出来的方法死活做不出来,应该用到的方法死活想不到。

  第三、基础知识深度化

  这部分就关系到我们后面的综合题了。深度化,也就是对于基础知识的应用与迁移。中考是没有难题的,我们所说的难题只不过是将许多简单的知识点有机的结合在一起,或稍作变形,或稍加隐藏。那么这部分就需要大家能够灵活并且熟练的应用我们的基础知识进行解答。灵活运用的前提,就是对于知识点认识的深刻。例如两边之和大于第三边,两边之差小于第三边。

  很多同学只能想到用它来求解范围问题,但事实上,在综合题中,这部分知识更多的用来求解线段关系以及最值问题。如果能有这种认识,那么在综合题中就能够自然而然的想到平移线段构造三角形或者平行四边形。再比如,二次函数的图像与任意一条直线的交点,不仅表示着两个图像相交,同时表示着他们所组成的二元一次方程有实根。

  对于直角三角形,他不仅仅是我们的一个求解对象,同时我们要认识到它是一个非常好的边角转化工具,出现特殊角度,我们要能够想到构造直角三角形,把条件进行转化。这些,都是需要在做够一定量的题目后对于基础知识深化理解才能掌握的方法。

  总结一下,为什么一直强调我们的基础知识,因为整个初中数学,根本不会出现超纲的题或者让大家完全没有学过的知识却解决问题,一定不会,全部都是由我们的基础知识单独或者成群出现的,所以掌握好基础知识,我们就能够做到易题不错,难题会做,小题快做,大题稳做。

篇2:中考数学基础知识要点精讲

初三学习、复习的效果直接影响到考试,那么怎样进行有效的复习呢?

重视课本

现在 命题的趋向,尤其是上海市中考是以基础题为主的,有两题的难度要求高。坚持源于教材的基础题按以前的惯例)有100多分,是课本上的原题或略有修改。建议第一阶段复习应以课本为主,例题等每一个题目认认真真地做一遍,并善于归纳分析和概括总结。现在许多初三学生一味搞题海战术,整天埋头做大量的课外习题,其效果并不明显,有本末倒置之嫌。

重视基础知识理解

基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生能揭示各知识点的内在联系,从知识结构的整体出发去解决问题,要求学生综合运用各种知识于一题。在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目特点非常明显,应掌握其基本解法。

篇3:中考数学基础知识要点精讲

篇3:中考数学基础知识要点精讲

新一轮 复习备考周期正式开始, 为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《 数学知识点:有理数概念总结》,仅供参考!

有理数基础知识:

1、正数(positionnumber):大于0的数叫做正数。

2、负数(negationnumber):在正数前面加上负号-的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:

(1)在直线上任取一个点表示数0,这个点叫做原点(origin);

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;

(3)选取适当的长度为单位长度。

6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.

(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

表达式:(a+b)+c=a+(b+c)

9、有理数减法法则:减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)

10、有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0.

乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

表达式:a(b+c)=ab+ac

11、倒数

1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。

根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

14、有理数的混合运算顺序

(1)先乘方,再乘除,最后加减的顺序进行;

(2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

15、科学技术法:把一个大于10的数表示成a?10n的形式(其中a是整数数位只有一位的数(即0a10),n是正整数)。

16、近似数(approximatenumber):

17、有理数可以写成m/n(m、n是整数,n0)的形式。另一方面,形如m/n(m、n是整数,n0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n0)表示。

篇4:中考数学基础知识要点精讲

篇4:中考数学基础知识要点精讲

备战中考复习应该知道的基础知识点

  同学们在复习数学这一科目的时候不知道老师有没有在你们复习的过程中提醒你们那些知识点是必须要掌握的,又有那些知识点不常考的等等,同学们在知道不同的知识点重要程度以后可以花不同的时间和精力来对数学课本的整体内容计做复习计划。有目标的复习也会比没有规划的复习有效果。

  三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半

  梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h

  (1)比例的基本性质:

  如果a:b=c:d,那么ad=bc

  如果:ad=bc:,那么a:b=c:d

  (2)合比性质:

  如果a/b=c/d,那么(a±b)/b=(c±d)/d

  (3)等比性质:

  如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那么(a+c+…+m)/(b+d+…+n)=a/b

  平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例

  推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  平行于三角形的一边,并且和其他两边相交的直线,:所截得的三角形的三边与原三角形三边对应成比例

  定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  相似三角形判定定理1:两角对应相等,两三角形相似

  直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)

  判定定理3:三边对应成比例,两三角形相似(SSS)

  定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  性质定理2:相似三角形周长的比等于相似比

  性质定理3:相似三角形面积的比等于相似比的平方

  任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  同学们在复习的时候首先最应该搞懂的就是整个阶段涉及到的数学考试内容中那些是比较基础的且又很常考的,然后把这些内容都搞懂以后你会发现数学复习已经过了大半内容了,然后在对一些特殊的内容做一些专项的复习,你的整个复习过程中差不多完成了。

篇5:中考数学基础知识要点精讲

篇5:中考数学基础知识要点精讲

  余弦基础公理

  角A的邻边比斜边 叫做∠A的余弦,记作cosA(由余弦英文cosine简写得来),即cosA=角A的邻边/斜边(直角三角形)。

  定理

  cos=x/r

  余弦定理三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.

  即

  在余弦定理中,令C=90°,这时cosC=0,所以

  c2=a2+b2

  a 0` 30` 45` 60` 90`

  cosa 1 √3/2 √2/2 1/2 0

  ∴cos30°= √3/2 cos45°=√2/2 cos60°=1/2 cos90°=0

  (1)已知三角形的三条边长,可求出三个内角;

  (2)已知三角形的两边及夹角,可求出第三边;

  (3)已知三角形两边及其一边对角,可求其它的角和第三条边。(见解三角形公式,推导过程略。)

  判定定理一(两根判别法):

  若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取

  减号的值

  ①若m(c1,c2)=2,则有两解;

  ②若m(c1,c2)=1,则有一解;

  ③若m(c1,c2)=0,则有零解(即无解)。

  注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。

 

版权声明:此文版权归原作者所有,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

相关文章

中考数学知识点之:科学记数法——概述与应用

科学记数法在数学、科学研究、工程计算以及数据处理等领域的应用,并通过对柑桔园产量和塑料袋丢弃量的估算实例来说明科学记数法的实际应用。通过计算平均产量和平均丢弃量,再利用科学记数法表示总产量的估算值。

2024-10-16

大家都在看

热门文章

让学习压力见鬼去吧!轻松应对的妙招

帮助青少年释放学习压力的几大妙招。王女士的儿子在初三时因学习压力过大出现了精神萎靡、食欲不振和失眠等症状。老师发现儿子的压力主要源于心理和生理两方面的问题。王女士采纳了老师的建议,通过心理调节和体育运动来缓解儿子的压力,最终取得了显著的效果。

2024-09-26

最新文章

想上重点中学初一开始应当这样学?

初一年级学生如何为进入重点中学做准备。文章指出初一成绩标准以及各科目均衡发展的重要性,并强调家长需要有战略头脑,明白孩子的学习计划和目标。文章反对参加竞赛和上课外班,主张打好基础,注重阅读和学习方法。在数学、语文和英语等科目的学习上给出了具体建议。

2025-02-13

Copyright © 2024 ~ 2025 易中考

京ICP备10209629号-24

北京九天揽月科技有限公司