当前位置: 首页 > 中考数学核心知识点精讲

中考数学核心知识点精讲

篇1:中考数学核心知识点精讲

九年级数学上册知识点整理:

初三数学有很多知识点,学生们有没有好好的归纳和总结呢?下面,教育中考频道小编为大家带来的九年级数学上册知识点整理,供大家参考。 一.知识框架 二.知识概念 二次根式:一般地,形如√a?(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,其中√0=0 对于本章内容,教学中应达到以下几方面要求: 1.理解二次根式的概念,了解被开方数必须是非负数的理由; 2.了解最简二次根式的概念; 3.理解并掌握下列结论: 1)是非负数;(2);(3); 4.掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算; 5.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。 第二十二章一元二次根式 一.知识框架 二.知识概念 一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a=?0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax2+bx+c=0(a=?0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。 (1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想. (2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根. 介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。 (3)一元二次方程ax2+bx+c=0(a=?0)的根由方程的系数a、b、c而定,因此: 解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。)这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法. 第二十三章旋转 一.知识框架 二.知识概念 1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。) 2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。 3.中心对称图形与中心对称: 中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。 中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。 4.中心对称的性质: 关于中心对称的两个图形是全等形。 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。 本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。 第二十四章圆 一.知识框架 二.知识概念 1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意 意两点的线段叫做弦。经过圆心的弦叫做直径。 3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。 6.圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。 7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO 8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。 9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r 10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。 11.切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。 12.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 13.有关定理: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 14.圆的计算公式1.圆的周长C=2πr=πd2.圆的面积S=πr^2;3.扇形弧长l=nπr/180 15.扇形面积S=π(R^2-r^2)5.圆锥侧面积S=πrl 以上初三上册数学知识点的整理归纳更多的有关初三(九年级)数学复习知识点的内容请查看教育网中考频道。

篇2:中考数学核心知识点精讲

中考数学核心知识点精讲大盘点

  中考的时候很多同学最担心的应该就是数学考试了吧,因为数学考试是有很多的不定性的,不知道题目时什么样的不知道考下来的结果。正是因为这些数学成了同学们最害怕的一个考试科目,那么中考数学的知识点有哪些呢

  知识点1:一元二次方程的基本概念

  1、一元二次方程3x2+5x-2=0的常数项是-2。

  2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。

  3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。

  4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。

  知识点2:直角坐标系与点的位置

  1、直角坐标系中,点A(3,0)在y轴上。

  2、直角坐标系中,x轴上的任意点的横坐标为0。

  3、直角坐标系中,点A(1,1)在第一象限。

  4、直角坐标系中,点A(-2,3)在第四象限。

  5、直角坐标系中,点A(-2,1)在第二象限。

  知识点3:已知自变量的值求函数值

  1、当x=2时,函数y=的值为1。

  2、当x=3时,函数y=的值为1。

  3、当x=-1时,函数y=的值为1。

  知识点4:基本函数的概念及性质

  1、函数y=-8x是一次函数。

  2、函数y=4x+1是正比例函数。

  3、函数是反比例函数。

  4、抛物线y=-3(x-2)2-5的开口向下。

  5、抛物线y=4(x-3)2-10的对称轴是x=3。

  6、抛物线的顶点坐标是(1,2)。

  7、反比例函数的图象在第一、三象限。

  知识点5:数据的平均数中位数与众数

  1、数据13,10,12,8,7的平均数是10。

  2、数据3,4,2,4,4的众数是4。

  3、数据1,2,3,4,5的中位数是3。

  知识点6:特殊三角函数值

  1.cos30°=。

  2.sin260°+cos260°=1。

  3.2sin30°+tan45°=2。

  4.tan45°=1。

  5.cos60°+sin30°=1。

  知识点7:圆的基本性质

  1、半圆或直径所对的圆周角是直角。

  2、任意一个三角形一定有一个外接圆。

  3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

  4、在同圆或等圆中,相等的圆心角所对的弧相等。

  5、同弧所对的圆周角等于圆心角的一半。

  6、同圆或等圆的半径相等。

  7、过三个点一定可以作一个圆。

  8、长度相等的两条弧是等弧。

  9、在同圆或等圆中,相等的圆心角所对的弧相等。

  10、经过圆心平分弦的直径垂直于弦。

  知识点8:直线与圆的位置关系

  1、直线与圆有唯一公共点时,叫做直线与圆相切。

  2、三角形的外接圆的圆心叫做三角形的外心。

  3、弦切角等于所夹的弧所对的圆心角。

  4、三角形的内切圆的圆心叫做三角形的内心。

  5、垂直于半径的直线必为圆的切线。

  6、过半径的外端点并且垂直于半径的直线是圆的切线。

  7、垂直于半径的直线是圆的切线。

  8、圆的切线垂直于过切点的半径。

  以上这些都是中考的时候数学最容易考的知识点

篇3:中考数学核心知识点精讲

  角

  1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。

  另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  2.角的平分线

  3、角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。

  4. 角的分类:(1)锐角 (2)直角 (3)钝角 (4)平角 (5)周角

  5. 相关的角:

  (1)对顶角 (2)互为补角 (3)互为余角

  6、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。

  注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。

  7、角的性质

  (1)对顶角相等 (2)同角或等角的余角相等 (3)同角或等角的补角相等。

 

篇4:中考数学核心知识点精讲

新一轮 复习备考周期正式开始, 为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《 数学知识点:数轴》,仅供参考!

数轴

1.三要素:原点、正方向、单位长度。通常原点用“O”表示,向右的方向为正方向,单位长度为1.

2.如何画数轴

①画直线(一般画成水平的),定原点,标出原点“O”;

②取原点向右的方向为正方向,并标出箭头;

③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点。

3.数轴上的点与有理数:

(1)数轴上的点与有理数一一对应 (2)左边的数<右边的数

篇5:中考数学核心知识点精讲

新一轮 复习备考周期正式开始, 为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《 数学知识点:菱形》,仅供参考!

菱形

菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边形变成了菱形。

1、菱形:有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质1:菱形的四条边相等。

3、菱形的性质2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。

4、菱形判定定理1:四边都相等的四边形是菱形。

5、菱形判定定理2:对角线互相垂直的平行四边形是菱形。

说明:要判定四边形是菱形的方法是:

法一:先证出四边形是平行四边形,再证出有一组邻边相等。(这就是定义证明)。

法二:先证出四边形是平行四边形,再证出对角线互相垂直。(这是判定定理2)

法三:只需证出四边都相等。(这是判定定理1)

篇6:中考数学核心知识点精讲

新一轮 复习备考周期正式开始, 为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《 数学知识点:矩形》,仅供参考!

矩形

矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90°时,其它的边、角位置也都随之变化。因此矩形的性质是在平行四边形的基础上扩充的。

1、矩形:有一个角是直角的平行四边形叫做短形(通常也叫做长方形)

2、矩形性质定理1:矩形的四个角都是直角。

3.矩形性质定理2:矩形的对角线相等。

4、矩形判定定理1:有三个角是直角的四边形是矩形。

说明:因为四边形的内角和等于360度,已知有三个角都是直角,那么第四个角必定是直角。

5、矩形判定定理2:对角线相等的平行四边形是矩形。

说明:要判定四边形是矩形的方法是:

法一:先证明出是平行四边形,再证出有一个直角(这是用定义证明)

法二:先证明出是平行四边形,再证出对角线相等(这是判定定理1)

法三:只需证出三个角都是直角。(这是判定定理2)

篇7:中考数学核心知识点精讲

新一轮 复习备考周期正式开始, 为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《 数学知识点:正方形》,仅供参考!

正方形

正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边相等,这样就形成了正方形。

1、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形性质定理1:正方形的四个角都是直角,四条边都相等。

3、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

4、正方形判定定理互:两条对角线互相垂直的矩形是正方形。

5、正方形判定定理2:两条对角线相等的菱形是正方形。

注意:要判定四边形是正方形的方法有

方法一:第一步证出有一组邻边相等;第二步证出有一个角是直角;第三步证出是平行四边形。(这是用定义证明)

方法二:第一步证出对角线互相垂直;第二步证出是矩形。(这是判定定理1)

方法三:第一步证出对角线相等;第二步证出是菱形。(这是判定定理2)

篇8:中考数学核心知识点精讲

  1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

  2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  (2)角平分线上的点到角两边距离相等。

  (3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

  (4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  (5)轴对称图形上对应线段相等、对应角相等。

  3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

  4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

  5.等腰三角形的判定:等角对等边。

  6.等边三角形角的特点:三个内角相等,等于60°,

  7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

  有一个角是60°的等腰三角形是等边三角形

  有两个角是60°的三角形是等边三角形。

  8.直角三角形中,30°角所对的直角边等于斜边的一半。

  9.直角三角形斜边上的中线等于斜边的一半。

篇9:中考数学核心知识点精讲

一、重要概念

1。数的分类及概念

数系表:

说明:“分类”的原则:1)相称(不重、不漏)

2)有标准

2。非负数:正实数与零的统称。(表为:x≥0)

常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

3。倒数:①定义及表示法

②性质:A.a=?1/a(a=?±1);B.1/a中,a=?0;C.01;a>1时,1/a<1;D。积为1。

4。相反数:①定义及表示法

②性质:A.a=?0时,a=?-a;B.a与-a在数轴上的位置;C。和为0,商为-1。

5。数轴:①定义(“三要素”)

②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。

6。奇数、偶数、质数、合数(正整数—自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7。绝对值:①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算

1.运算法则(加、减、乘、除、乘方、开方)

2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]

分配律)

3.运算顺序:A。高级运算到低级运算;B。(同级运算)从“左”

到“右”(如5÷×5);C。(有括号时)由“小”到“中”到“大”。

附:典型例题

1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

=b-a。

2。已知:a-b=-2且ab<0,(a=?0,b=?0),判断a、b的符号。

第二章代数式

★重点★代数式的有关概念及性质,代数式的运算

☆内容提要☆

一、重要概念

分类:

1。代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

的一个数或字母也是代数式。

整式和分式统称为有理式。

2。整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3。单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。

4。系数与指数

区别与联系:①从位置上看;②从表示的意义上看

5。同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

6。根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7。算术平方根

⑴正数a的正的平方根([a≥0—与“平方根”的区别]);

⑵算术平方根与绝对值

①联系:都是非负数,=│a│

②区别:│a│中,a为一切实数;中,a为非负数。

8。同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9。指数

⑴(—幂,乘方运算)

①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)

⑵零指数:=1(a=?0)

负整指数:=1/(a=?0,p是正整数)

二、运算定律、性质、法则

1。分式的加、减、乘、除、乘方、开方法则

2。分式的性质

⑴基本性质:=(m=?0)

⑵符号法则:

⑶繁分式:①定义;②化简方法(两种)

3。整式运算法则(去括号、添括号法则)

4。幂的运算性质:①·=;②÷=;③=;④=;⑤

技巧:

5。乘法法则:⑴单×单;⑵单×多;⑶多×多。

6。乘法公式:(正、逆用)

(a+b)(a-b)=

(a±b)=

7。除法法则:⑴单÷单;⑵多÷单。

8。因式分解:⑴定义;⑵方法:A。提公因式法;B。公式法;C。十字相乘法;D。分组分解法;E。求根公式法。

9。算术根的性质:=;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)

10。根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C.。

11。科学记数法:(1≤a<10,n是整数=

三、应用举例(略)

四、数式综合运算(略)

第三章统计初步

★重点★

☆内容提要☆

一、重要概念

1。总体:考察对象的全体。

2。个体:总体中每一个考察对象。

3。样本:从总体中抽出的一部分个体。

4。样本容量:样本中个体的数目。

5。众数:一组数据中,出现次数最多的数据。

6。中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)

二、计算方法

1。样本平均数:⑴;⑵若,,…,,则(a—常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

2。样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

3。样本标准差:

篇10:中考数学核心知识点精讲

  易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。

  易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。

  易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。

  易错点4:全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。边边角两个三角形不一定全等。

  易错点5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。

  易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。

  易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。

  易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。

  易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。

  易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)。

  易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。

篇11:中考数学核心知识点精讲

新一轮 复习备考周期正式开始, 为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《 数学知识点:轴对称》,仅供参考!

轴对称

轴对称的定义:

把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

轴对称的性质:

(1)对应点所连的线段被对称轴垂直平分;

(2)对应线段相等,对应角相等;

(3)关于某直线对称的两个图形是全等图形。

轴对称的判定:

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

这样就得到了以下性质:

1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。

4.对称轴是到线段两端距离相等的点的集合。

轴对称作用:

可以通过对称轴的一边从而画出另一边。

可以通过画对称轴得出的两个图形全等。

扩展到轴对称的应用以及函数图像的意义。

轴对称的应用:

关于平面直角坐标系的X,Y对称意义

如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。

相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

关于二次函数图像的对称轴公式(也叫做轴对称公式 )

设二次函数的解析式是 y=ax2+bx+c

则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。

譬如,等腰三角形经常添设顶角平分线;

矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;

正方形,菱形问题经常添设对角线等等。

另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,

或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

篇12:中考数学核心知识点精讲

一、本章的两套定理

第一套(比例的有关性质):

涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

第二套:

注意:①定理中“对应”二字的含义;

②平行→相似(比例线段)→平行。

二、相似三角形性质

1.对应线段…;2.对应周长…;3.对应面积…。

三、相关作图

①作第四比例项;②作比例中项。

四、证(解)题规律、辅助线

1.“等积”变“比例”,“比例”找“相似”。

2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。

3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。

4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。

5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。

篇13:中考数学核心知识点精讲

  统计

  1.总体:考察对象的全体。

  2.个体:总体中每一个考察对象。

  3.样本:从总体中抽出的一部分个体。

  4.样本容量:样本中个体的数目。

  5.众数:一组数据中,出现次数最多的数据。

  6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)

  计算方法

  1.样本平均数:⑴ ;⑵若 , ,…, ,则 (a—常数, , ,…, 接近较整的常数a);⑶加权平均数: ;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

  2.样本方差:⑴ ;⑵若 , ,…, ,则 (a—接近 、 、…、 的平均数的较“整”的常数);若 、 、…、 较“小”较“整”,则 ;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

 

篇14:中考数学核心知识点精讲

知识点很多,教育网小编给大家分类总结,下面一起来看看《中考数学核心知识点精讲:正负数》部分,欢迎大家阅读参考。

中考数学核心知识点精讲:正负数

1、正数:像小学学过的大于0的数叫做正数。

2、负数:在正数前面加上负号“-”的数叫做负数。

3、正数负数的判断方法:

⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。

⑵含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。

4、 0的含义:①0表示起点。②0表示没有。③0表示一种温度。④0表示编号的位数。⑤0表示精确度。⑥0表示正负数的分界。⑦0表示海拔平均高度。

5、 具有相反意义的量;

6、 正负数的作用:在同一问题中,用正负数表示的量具有相反的意义。

经过上述对《中考数学核心知识点精讲:正负数》的内容整理,希望大家能够认真复习好数学,更多资讯请参考教育网。

篇15:中考数学核心知识点精讲

一、数与代数 Ⅰ、数与式 1.有理数的加法、乘法运算 同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。 同号得正异号负,一项为零积是零。【注】“大”减“小”是指绝对值的大小。 2.合并同类项 合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。 3.去、添括号法则 去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号; 括号前面是负号,去、添括号都变号。 4.单项式运算 加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。 5.分式混合运算法则 分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难; 变号必须两处,结果要求最简。 6.平方差公式 两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。 7.完全平方公式 首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。 8.因式分解 一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根, 换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。 【注】一提(提公因式)二套(套公式) 9.二次三项式的因式分解 先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。 10.比和比例 两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积; 前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比; 两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比; 商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。 11.根式和无理式 表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制; 无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。 12.最简根式的条件 最简根式三条件:号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

版权声明:此文版权归原作者所有,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

相关文章

中考数学核心知识点解析与应用之概率计算

等可能试验中事件的概率问题及概率计算,包括理解等可能试验的概念,使用等可能试验中事件概率计算公式,以及用枚举法或画“树形图”方法求等可能事件的概率。同时,文章强调了在求解概率问题时要注意确定事件是否可能,以及完整考虑所有等可能情况。

2024-10-08

大家都在看

热门文章

合理支配时间的能力

合理支配时间的能力对于中学生健康成长的重要性。文章提出,时间对每个人都是公平的,但如何有效利用时间却因人而异。一些同学可能学习效率不高,而另一些同学则能在保持良好学习成绩的同时,享受充分的娱乐时间。这其中的关键在于如何科学合理地安排时间。文章介绍了几

2025-03-19

最新文章

“自我纠错”第一课 “坏透了”的学生这样教

教育中的“无错推断”原则,即认为学生犯错并非出于恶意,而是由于各种原因导致的。老师或家长应该帮助孩子自我反省,形成自我纠错机制。深圳大学城丽湖实验学校校长房超平强调孩子犯错不如叫“试错”,为孩子犯错辩护,认为孩子是在不断试错与改错中成长。同时,班主任

2025-04-26

Copyright © 2024 ~ 2025 易中考

京ICP备10209629号-24

北京九天揽月科技有限公司