当前位置: 首页 > 初中数学重要定理概述

初中数学重要定理概述

篇1:初中数学重要定理概述

  中学数学必备定理

  一点、线、角

  点的定理:过两点有且只有一条直线

  点的定理:两点之间线段最短

  角的定理:同角或等角的补角相等

  角的定理:同角或等角的余角相等

  直线定理:过一点有且只有一条直线和已知直线垂直

  直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短

  二几何平行

  平行定理:经过直线外一点,有且只有一条直线与这条直线平行

  推论:如果两条直线都和第三条直线平行,这两条直线也互相平行

  证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行

  两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补

  三三角形内角定理

  定理:三角形两边的和大于第三边

  推论:三角形两边的差小于第三边

  三角形内角和定理:三角形三个内角的和等于180°

  四全等三角形判定

  定理:全等三角形的对应边、对应角相等

  边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等

  角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等

  推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

  边边边定理(SSS):有三边对应相等的两个三角形全等

  斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

  五角的平分线

  定理1:在角的平分线上的点到这个角的两边的距离相等

  定理2:到一个角的两边的距离相同的点,在这个角的平分线上

  角的平分线是到角的两边距离相等的所有点的集合

  六等腰三角形性质

  等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)

  推论1:等腰三角形顶角的平分线平分底边并且垂直于底边

  等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  七对称定理

  定理:线段垂直平分线上的点和这条线段两个端点的距离相等

  逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  定理1:关于某条直线对称的两个图形是全等形

  定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  八直角三角形定理

  定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  判定定理:直角三角形斜边上的中线等于斜边上的一半

  勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

  勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

  九多边形内角和定理

  定理:四边形的内角和等于360°;四边形的外角和等于360°

  多边形内角和定理:n边形的内角和等于(n-2)×180°

  推论:任意多边的外角和等于360°

  十平行四边形定理

  平行四边形性质定理:

  1.平行四边形的对角相等

  2.平行四边形的对边相等

  3.平行四边形的对角线互相平分

  推论:夹在两条平行线间的平行线段相等

  平行四边形判定定理:

  1.两组对角分别相等的四边形是平行四边形

  2.两组对边分别相等的四边形是平行四边形

  3.对角线互相平分的四边形是平行四边形

  4.一组对边平行相等的四边形是平行四边形

  11矩形的定理

  矩形性质定理1:矩形的四个角都是直角

  矩形性质定理2:矩形的对角线相等

  矩形判定定理1:有三个角是直角的四边形是矩形

  矩形判定定理2:对角线相等的平行四边形是矩形

  12菱形定理

  菱形性质定理1:菱形的四条边都相等

  菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角

  菱形面积=对角线乘积的一半,即S=(a×b)÷2

  菱形判定定理1:四边都相等的四边形是菱形

  菱形判定定理2:对角线互相垂直的平行四边形是菱形

  13正方形定理

  正方形性质定理1:正方形的四个角都是直角,四条边都相等

  正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  14中心对称定理

  定理1:关于中心对称的两个图形是全等的

  定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  15等腰梯形性质定理

  等腰梯形性质定理:

  1.等腰梯形在同一底上的两个角相等

  2.等腰梯形的两条对角线相等

  等腰梯形判定定理:

  1.在同一底上的两个角相等的梯形是等腰梯形

  2.对角线相等的梯形是等腰梯形

  平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰

  推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边

  16中位线定理

  三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半

  梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

  17相似三角形定理

  相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  相似三角形判定定理:

  1.两角对应相等,两三角形相似(ASA)

  2.两边对应成比例且夹角相等,两三角形相似(SAS)

  直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  判定定理3:三边对应成比例,两三角形相似(SSS)

  相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  性质定理:

  1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  2.相似三角形周长的比等于相似比

  3.相似三角形面积的比等于相似比的平方

  18三角函数定理

  任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  19圆的定理

  定理:过不共线的三个点,可以作且只可以作一个圆

  定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧

  推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧

  推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧

  推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧

  定理:

  1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等

  2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线

  3.圆的切线垂直经过切点的半径

  4.三角形的三个内角平分线交于一点,这点是三角形的内心

  5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  6.圆的外切四边形的两组对边的和相等

  7.如果四边形两组对边的和相等,那么它必有内切圆

  8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等

  20比例性质定理

  比例的基本性质

  如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

  合比性质

  如果a/b=c/d,那么(a±b)/b=(c±d)/d

  等比性质

  如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

篇2:初中数学重要定理概述

勾股定理

:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。 目前 学生学,教材的证明方法采用赵爽弦图。

勾股定理指出

:直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方。

勾股定理的逆定理

:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方,那么这个三角形是直角三角形。 勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。

勾股定理其实是余弦定理的一种特殊形式。 我国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。

勾股定理的来源

毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理做出了详细注释,又给出了另外一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。常用勾股数组(3, 4 ,5);(6, 8, 10);(9,12,15);(5, 12 ,13);(8, 15, 17) ;(7,24,25) ;(9,40,41)。

篇3:初中数学重要定理概述

01

勾股定理

02

勾股定理的证明

03

勾股定理的适用范围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形

04

勾股定理的应用

05

勾股定理的逆定理

06

勾股数

07

勾股定理的应用

勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.

08

勾股定理逆定理的应用

勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.

09

勾股定理及其逆定理的应用

勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:

篇4:初中数学重要定理概述

  初中数学解题方法总结:

  一、选择题的解法

  1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。

  2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

  在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

  3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

  4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;

  每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

  5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

  二、常用的数学思想方法

  1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

  在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;

  这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

  为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

  配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

  换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;

  则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9、演绎法:由一般到特殊的推理方法。

  10、归纳法:由一般到特殊的推理方法。

  11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;

  根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。

  类比法既可能是特殊到特殊,也可能一般到一般的推理。

  三、函数、方程、不等式

  常用的数学思想方法:

  (1)数形结合的思想方法。

  (2)待定系数法。

  (3)配方法。

  (4)联系与转化的思想。

  (5)图像的平移变换。

  四、证明角的相等

  1、对顶角相等。

  2、角(或同角)的补角相等或余角相等。

  3、两直线平行,同位角相等、内错角相等。

  4、凡直角都相等。

  5、角平分线分得的两个角相等。

  6、同一个三角形中,等边对等角。

  7、等腰三角形中,底边上的高(或中线)平分顶角。

  8、平行四边形的对角相等。

  9、菱形的每一条对角线平分一组对角。

  10、等腰梯形同一底上的两个角相等。

  11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。

  12、圆内接四边形的任何一个外角都等于它的内对角。

  13、同弧或等弧所对的圆周角相等。

  14、弦切角等于它所夹的弧对的圆周角。

  15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

  16、全等三角形的对应角相等。

  17、相似三角形的对应角相等。

  18、利用等量代换。

  19、利用代数或三角计算出角的度数相等

  20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。

  五、证明直线的平行或垂直

  1、证明两条直线平行的主要依据和方法:

  (1)定义、在同一平面内不相交的两条直线平行。

  (2)平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。

  (3)平行线的判定:同位角相等(内错角或同旁内角),两直线平行。

  (4)平行四边形的对边平行。

  (5)梯形的两底平行。

  (6)三角形(或梯形)的中位线平行与第三边(或两底)

  (7)一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。

  2、证明两条直线垂直的主要依据和方法:

  (1)两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。

  (2)直角三角形的两直角边互相垂直。

  (3)三角形的两个锐角互余,则第三个内角为直角。

  (4)三角形一边的中线等于这边的一半,则这个三角形为直角三角形。

  (5)三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。

  (6)三角形(或多边形)一边上的高垂直于这边。

  (7)等腰三角形的顶角平分线(或底边上的中线)垂直于底边。

  (8)矩形的两临边互相垂直。

  (9)菱形的对角线互相垂直。

  (10)平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。

  (11)半圆或直径所对的圆周角是直角。

  (12)圆的切线垂直于过切点的半径。

  (13)相交两圆的连心线垂直于两圆的公共弦。

版权声明:此文版权归原作者所有,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

相关文章

初中数学学习的艺术:勤学补拙之道

初中数学学习的艺术,强调勤学补拙的重要性,并围绕预习、听课、练习三个核心环节提出具体的学习方法和建议。通过有效的预习、积极参与课堂互动和大量的练习,学生可以更高效地学习数学,培养逻辑思维和问题解决能力。

2025-02-05

大家都在看

热门文章

让学习压力见鬼去吧!轻松应对的妙招

帮助青少年释放学习压力的几大妙招。王女士的儿子在初三时因学习压力过大出现了精神萎靡、食欲不振和失眠等症状。老师发现儿子的压力主要源于心理和生理两方面的问题。王女士采纳了老师的建议,通过心理调节和体育运动来缓解儿子的压力,最终取得了显著的效果。

2024-09-26

最新文章

想上重点中学初一开始应当这样学?

初一年级学生如何为进入重点中学做准备。文章指出初一成绩标准以及各科目均衡发展的重要性,并强调家长需要有战略头脑,明白孩子的学习计划和目标。文章反对参加竞赛和上课外班,主张打好基础,注重阅读和学习方法。在数学、语文和英语等科目的学习上给出了具体建议。

2025-02-13

Copyright © 2024 ~ 2025 易中考

京ICP备10209629号-24

北京九天揽月科技有限公司