中考数学试卷深度解析

篇1:中考数学试卷深度解析
初一上册
有理数、整式的加减、一元一次方程、图形的初步认识。
(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
考察内容:复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。
(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
考察内容:
①整式的概念和简单的运算,主要是同类项的概念和化简求值
②完全平方公式,平方差公式的几何意义
③利用提公因式发和公式法分解因式。
(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
考察内容:
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
(4)几何:角和线段,为下册学三角形打基础
初一下册
相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。
(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。
考察内容:
①平行线的性质(公理)
②平行线的判别方法
③构造平行线,利用平行线的性质解决问题。
(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。
考察主要内容:
①考察平面直角坐标系内点的坐标特征
②函数自变量的取值范围和球函数的值
③考察结合图像对简单实际问题中的函数关系进行分析。
(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。
考察内容:①方程组的解法,解方程组②根据题意列二元一次方程组解经济问题。
(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。
主要考察内容:
① 一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。
② 列不等式(组)解决经济问题,调配问题等,主要以解答题为主。
③留意不等式(组)和函数图像的结合问题。
(5)数据库的收集整理与描述
分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。
考察内容:
①常见统计图和平均数,众数,中位数的计算分析。
②方差,极差的应用分析
③与现实生活有关的实际问题的考察热点。题目注重考查统计学的知识分析和数据处理。
初二上册
三角形、全等三角形、轴对称、整式的乘除与因式分解、分式。
(1)三角形:是初中数学的基础,中考命题中的重点。中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。
考查内容:
①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定。
②三角形全等融入平行四边形的证明
③三角形运动,折叠,旋转,拼接形成的新数学问题
④等腰三角形的性质与判定,面积,周长等
⑤直角三角形的性质,勾股定理是重点
⑥三角形与圆的相关位置关系
⑦三角形中位线的性质应用
(2)全等三角形
(3)轴对称:图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。
考察内容:①轴对称和轴对称图形的性质判别。
②注意镜面对称与实际问题的解决。
(4)整式的乘除与因式分解:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。
近几年主要考察
①整式的概念和简单的运算,主要是同类项的概念和化简求值
②完全平方公式,平方差公司的几何意义
③利用提公因式发和公式法分解因式。
(5)分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。
近几年主要考察
①分式的概念,性质,意义
②分式的运算,化简求值。
③列分式方程解决实际问题。
初二下册
二次根式、勾股定理、四边形、一次函数和数据的分析。
(1)二次根式
(2)勾股定理:解直角三角形,解直角三角形的知识是近几年各地中考命题的热点之一,考察题型为选择题,填空题,应用题为主,分值一般8-12分,难易度为难。
考察内容:
①常见锐角的三角函数值的计算
②根据图形计算距离,高度,角度的应用题
③根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题。
(3)四边形:初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。
主要考察内容:
①多边形的内角和,外角和等问题
②图形的镶嵌问题
③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。
(4)一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。
主要考察内容:
①会画一次函数的图像,并掌握其性质。
②会根据已知条件,利用待定系数法确定一次函数的解析式。
③能用一次函数解决实际问题。
④考察一次函数与二元一次方程组,一元一次不等式的关系。
(5)数据的分析
初三上册
二次函数、一元二次方程、旋转、圆和概率初步。
(1)二次函数:二次函数的图像和性质是中考数学命题的热点,难点。试题难度一般为难。常见选择,填空题分值为3-5分,综合题分值为10-12分。
考察内容:
①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②能用数形结合,归纳等熟悉思想,根据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。
③综合运用方程,几何图形,函数等知识点解决问题。
(2)一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。
考察内容:
①方程及方程解的概念
②根据题意列一元一次方程
③解一元一次方程。
(3)旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。分值一般为5-8分,题型以填空,选择,作图为主,偶尔也会出现解答题。
考察内容:
①中心对称和中心对称图形的性质
②旋转和平移的性质。
(4)圆:圆和圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容。题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的题型,分值一般是6-12分,难易度为中。
考察内容:
①圆的有关性质的应用。垂径定理是重点。
② 直线和圆,圆和圆的位置关系的判定及应用。
③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算
④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题。
(5)概率初步:分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中。
考察内容:
①简答事件的概率求解,图表法和数形图法
②利用概率解决实际,公平性问题等
③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新。
初三下册
反比例函数、相似、锐角三角函数和投影与视图。
(1)反比例函数:反比例函数的图像和性质是中考数学命题的重要内容,试题新颖,题型灵活多样,所占分值约为3-8分,难易度属于难。
考察内容:
①会画反比例函数的图像,掌握基本性质。
②能根据条件确定反比例函数的表达式。
③能用反比例函数解决实际问题。
(2)相似:图形的形似是平面几何中极为重要的内容,是中考数学中的重点考察内容。一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难。
考察内容是:
①相似三角形的性质和判别方法,是重点。
②相似多边形的认识,黄金分割的应用。
③相似形与三角形,平行四边形的综合性题目是难点。
(3)锐角三角函数
(4)投影与视图:分值一般为3-6分,试题以填空,选择,解答的形式出现。
考察内容:
①常见几何体的三视图
②常见几何体的展开和折叠,展开和折叠是考试的热点,值得注意。
③利用相似结合平行投影和中心投影解决实际问题。
中考数学题型
(不同地区分值不同,可供参考)
选择题:3分一个,共14个,总分42分。
填空题:3分一个,共5个,总分15分。
解答题:共7题,总分63分。
中考重难点分析
(一)线段、角的计算与证明问题
中考中的简答题一般是分为两到三部分的。第一部分基本上都是简单题和中档题,目的在于考查基础。第二部分第二部分往往就是开始拉分的中难题了。
(二)列方程(组)解决应用问题
在中考中,方程是初中数学当中最重要的部分,所以也是中考必考内容。从近年来中考来看,结合时事热点考的比较多,所以还需要考生有一些实际生活经验。
(三)阅读理解问题
阅读理解问题是中考中的一个亮点。阅读理解往往是先给一个材料或介绍一个超纲的知识或给出一个针对某一种题目的解法,然后再给出条件出题。
(四)多种函数交叉综合问题
初中接触的函数主要有一次函数、二次函数和反比例函数。这类题目本身并不会太难,很少作为压轴题目出现,一般都是作为一道中档次题目出现来考查学生对函数的掌握。
(五)动态几何
从历年的中考来看,动态几何往往作为压轴的题目出现,得分率也是最低的。动态几何一般分为两类,一类是代数综合方面,在坐标系中,动直线一般是用多种函数交叉求解。另一类是几何综合题,在梯形、矩形和三角形中设立动点,考查学生的综合分析能力。
(六)图形位置关系
中学数学当中,图形位置关系主要包括点、线、三角形、矩形和正方形及它们之间的关系。在中考中会包括在函数、坐标系及几何题中,其中最重要的是三角形的各种问题。
篇2:中考数学试卷深度解析
1、一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
2、确保运算准确,立足一次成功
数学题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿 快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在 以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
3、讲求规范书写,力争既对又全
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又 是造成数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分” 也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
篇3:中考数学试卷深度解析
中考数学压轴题得分分析
学生害怕“压轴题”,恐怕与“题海战术”有关。为了应对中考压轴题,家长可以根据实际,为学生精选一二十道,但不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。盲目追“新”求“难”,忽视基础,用大量的复习时间去应付只占整卷10%的压轴题,结果必然是得不偿失。
事实证明:有相当一部分学生在压轴题的失分,并不是没有解题思路,而是错在非常基本的概念和简单的计算上,或是输在“审题”上,因此在最后总复习阶段,还是应当把功夫花在夯实基础、总结归纳上,打通思路,掌握方法,指导他们灵活运用知识。
篇4:中考数学试卷深度解析
01构建完整的知识框架
1.构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。
2.正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,解决问题才能得心应手,成绩才会提高。
02数学中考知识重难点分析
1.函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。特别是二次函数是中考的重点,也是中考的难点,在填空、选择、解答题中均会出现,且知识点多,题型多变。而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。有一定难度。如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2.应用题,中考中占总分的30%左右。包括方程(组)应用、一元一次不等式(组)应用、函数应用、解三角形应用、概率与统计应用几种题型。一般会出现2~3道解答题(30分左右)及2~3道选择、填空题(10分~15分),占中考总分的30%左右。
现在中考对数学实际应用的考查会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。
3.整式、分式、二次根式的化简运算。整式的运算、因式分解、二次根式、科学记数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
中考一般以选择、填空形式出现,但却是解答题完整解答的基础。运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。
4.圆,中考中占总分的10%左右。包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。其中切线的性质和判定、圆中的基本性质的理解和运用、直线与圆的位置关系、圆中的一些线段长度及角度的计算是重点也是难点。
5.三角形(全等、相似、角平分线、垂直平分线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右。
三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。
其中解三角形在初三下册学习,是以直角三角形为基础的,在中考中会以船的触礁、楼高、影子问题出现一道大题。因此在初中数学学习中也是一个重点。
四边形在初二进行学习的,其中特殊四边形的性质及判定定理很多,容易混淆,深刻理解这些性质和判定、理清它们之间的联系是解决证明和计算的基础,四边形中题型多变,计算、证明都有一定难度。经常在中考选择题、填空题及解答题的压轴题(最后一题)中出现,对学生综合运用知识的能力要求较高。
03各年级的常见现象及应对策略
初一学不好数学:
许多小学数学学科成绩很好的学生到了初中数学成绩会出现下滑,成绩不稳定等现象。初中数学与小学数学相比,知识的深度、广度、能力要求都有不小的提高。
对概念、法则、公式、定理知识一知半解,没有吃透课本内容。课后又不能及时巩固、总结、寻找知识间的联系,只是赶作业、套题型,遇到难题缺乏思考,学习方法的缺乏或不得当严重制约学生的有效思维,久而久之容易形成思维惰性,学不好数学。
以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是更上一层楼!
策略:
1.狠抓基础,循序渐进。立足课本,把课本知识点吃透,辅以基础知识、基本方法的训练,先以基础题为主,培养运算能力,提升自信心。等基础知识熟悉了,再逐渐加深难度,能举一反三,形成自己的思维。能灵活运用知识点。
2.提高作业质量和效率。每天作业是对当天所学内容的巩固,如果能高质量的完成当天的作业,就能把当天所学的知识点消化吸收,遗留的问题就少,进而学习效率就高。
3.培养良好的学习习惯。及时预习书本知识,然后带着问题去听课,提高课堂效率。
总结相似的题型,收集自己的典型错题和不会做的题目。就不懂得问题,积极讨论、请教老师。自己制定每日学习计划,形成习惯。
初二数学成绩下滑:
初中数学是一个整体。初二的难点多,初三的考点多。相对而言,初一数学知识点虽然很多,但都比较基础,中考多以基础题为主,要求不高。
初二是初中数学学习的一个拐点,坡度突然增加,知识点上的增多和难度的增加,在学习方法上学生是很容易适应的。特别是几何内容的增加,它的研究对象从“数”到“形”发生变化,方法也从“运算”到“推理”发生变化,学生的分析能力和表达能力跟不上就很难从图形中找到关系,推理论证困难学科(物理)也相应增加,学业加重,精力分散,有些学生有些力不从心,缺乏毅力的,就会慢慢掉队。
策略:
1.学会给自己明确目标,以增强学习的目的性、主动性。
2.从基础知识入手,用简单、中等的题来训练自己的解题思路,思考“凭什么”从第一步走到第二步,它们之间的关联性、逻辑性是怎样的?从而真正形成自己的做题思维。
3.坚持养成总结题型、错题、典型题的习惯,常坚持3~4周后,就能养成习惯。
4.过好几何入门关——识图、书写、推理。书写是几何入门的难点,有条理的书写时培养逻辑推理能力的保证。应根据题目的要求,步步有据,句句有理,由条件推理得到结论。对书本上的定义、性质定理、判定定理要非常熟悉。
5.进行知识归类,如将判定方法、定理归类整合,使所学知识系统化。
初三基础不扎实,力不从心:
进入初三以后,学生的学习到了一个新的阶段,为了总复习能有更多的时间,各科上课节奏开始加快,学业任务相应加重,基础不扎实的学生就会跟不上,严重时自信心会严重受挫,感觉力不从心。
平时做试卷审题不严,看题不清,能做对的题目也没拿到分。小错不断,没有养成积累错题的习惯。遇到综合性问题时,缺乏解题思路和方法。遇到难题,就自动放弃了。长时间持续下去,丧失自信心,成绩也会下降。
策略:
1.第一步要增强自己的自信心。从时间、中考试卷难度、现阶段的情况、预期目标、成功提高成绩学生案例等方面分析,增强学习动力。
2.狠抓基础,循序渐进。利用上初三前的暑假把初一、初二年级的知识漏洞通过查、学、练、测的循环模式补起来,形成完整的知识框架,在继续学习新知识时能跟上老师节奏,自然会轻松很多。
3.突出重点,突破难点。认真分析按照中考考纲及近几年中考数学试卷命题的变化规律,对重点考查内容进行分类训练,对难点进行个个击破。
4.熟悉并运用常用的数学思想,如方程思想、整体思想、化归思想、函数思想、数形结合思想、分类讨论思想等。
5.中考基础题真题演练。要求达到自己理想的正确率,也可以全面考察知识漏洞情况,可以再做复习。
6.在学习的过程中,培养预习、带着问题上课、复习、积累、总结的习惯,从“要学”变成“会学”,最后会“自学”。不仅对现在很重要,对以后高中的学习也有很大帮助。
7.基础扎实之后,可以逐渐增加难度,做一些中等难度的题目,也不能盲目的只顾做题,要注重思维、思考问题的能力,解题的方法、技巧的训练。
8.中考压轴题突破。纵观数学中考命题规律,压轴题主要出现在函数和三角形或四边形或圆部分的动态问题或分类讨论的内容。对压轴题进行分类剖析,形成解题思路和技巧。
篇5:中考数学试卷深度解析
教
学
目
标
知识技能
通过对"杠杆原理";等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题
数学思考
通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念
解决问题
分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理
情感态度
利用函数探索古希腊科学家阿基米德发现的"杠杆定律";,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣
重点
运用反比例函数解释生活中的一些规律、解决一些实际问题
难点
把实际问题利用反比例函数转化为数学问题加以解决
篇6:中考数学试卷深度解析
中考数学备战策略全面分析
试卷的基本情况
1.试卷结构:由填空、选择、解答题等28个题目组成。
2.考试内容:根据《数学课程标准》要求,将对“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的知识进行考查。按知识版块进行系统归纳代数具体为:(1)实数的概念及其运算;(2)代数式的分类、概念及其运算;(3)方程(组)的概念、性质、解法及应用:(4)不等式(组)的概念、性质、解法:(5)函数的概念,几种常见函数的图象及性质;(6)统计和概率。几何知识归纳为:(1)图形的初步认识;(2)三角形的概念、分类、定理及其应用;(3)四边形的概念、定理及其应用;(4)图形与变换;(5)相似形的概念、定理及其应用;(6)解直角三角形;(7)圆的概念、定理及其应用;
中考要求
中考要面向全体考生,以数与代数、空间与图形、统计与概率、实践与综合应用内容为依据,关注学生对数学的基本认识,关注学生的数学活动过程、关注学生的数学思考、关注学生解决问题的能力、关注学生对数学与现实生活以及与其他学科知识之间联系的认识等。充分体现新课标理念,力求客观、公正、全面、准确地评价学生数学学习状况。
命题规律
1.重视数学基础知识的认识和基本技能、基本思想的考查。
2.重视数学思想和方法的考查。
3.重视实践能力和创新意识的考查。
复习的基本原则
以《课程标准》和数学教材为依据,立足于掌握和巩固基本知识和基本技能,强化主干知识,注重教材的重点和难点,加强对薄弱环节的复习,及时查缺补漏,注重知识应用能力,培养灵活及综合解决问题的能力。
复习中的几点建议
1.注重课本知识,查漏补缺。全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。
2.注重课堂学习,提高效率。在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
3.夯实基础知识,学会思考。在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
4.注意知识的迁移,学会融会贯通。课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。
5.复习形成梯度,选择典型习题。如果说第一阶段是中考复习的基础,是重点,侧重了双基训练,那么第二阶段的复习就是第一阶段复习的延伸和提高,这个阶段的练习题要选择有一些难度的题,但又不是越难越好,难题做的越多越好,做题要有典型性,代表性,所选择的难题是自己能够逐步完成的,这样才能既激发自己解难求进的学习欲望,又能使自己从解决较难问题中看到自己的力量,增强学习的信心,产生更强的求知欲望。
6.重视基础知识,注重解题方法。基础知识就是初中数学课程中所涉及的概念、公式、公理、定理等。要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。每年的中考数学会出现一两道难度较大,综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,待定系数法、判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应该熟练掌握。
篇7:中考数学试卷深度解析
东城初三数学试卷分析总结
一、试卷分析
本次考试用题为恒口片区统考题,卷子整体分为选择题、填空题、解答题三大类型。这次选择题满分30分,最高分21分并且只有一个,填空题满分12分最高分9分,解答题满分78分,最高分59分。
1、选择题中错的比较多的是第5、7、8、9题。第5、7题涉及的是第三章旋转的概念及其性质,学生纯粹是不认真,没读清楚题目导致错误。第8题为二次函数与X轴交点情况。第9题是运动性问题,实际就是求二次函数最值问题。
2、填空题十分也较多。如第11题二次函数由一般式化简为顶点式还是有一部分学生化简错误。第14题求二次函数解析式问题,函数与几何图形的应用,三角形勾股定理知识。
3、解答题难度和题量与第一次月考相比,都大很多。主要涉及一元二次方程根与系数的关系,图形的旋转性质,二次函数与实际问题中的利润、面积最大化问题。最后一个大题,也就是25题涉及了下学期的知识点正切值和余切值。可以看出学生掌握的还是不够好。
二、原因分析
本次考试出现如此巨大落差主要原因如下。
1、函数知识是学生最难理解的内容,学生掌握不牢,从而造成成绩偏低。
2、本次试卷相对来说题量较大,不管是选择题还是填空解答题,很大一部分学生无法完成所有题目,时间不够用,导致后面会做的题都没有时间完成。
3、考得近15分的内容,与考试范围不符,涉及到了下册的内容。
4、一部分后进生只完成了第一大题选择题,后面非选择题(90分)只字未动,完全是放弃了这门功课。
三、改进措施
这次考试暴露了很多问题,学生练题太少,稍有难度,稍有陷阱的题就不会了,故在后期应加强在这方面的练习。
1、熟记、熟知、熟背数学中的公式定理推论和定义概念,灵活运用。
2、养成良好的学习习惯,认真读题,规范答题,否则一不小心掉进“坑”里;
3、在上课中更要注重细节的强调,课下严格督促他们多记多背多练。
篇8:中考数学试卷深度解析
中考数学:图形运动问题分析
中考数学中,常见的图形运动有三种:旋转平移和翻折。运动变化问题正是利用它们变化图形的位置,引起条件或结论的改变,或者把分散的条件集中,以利于解题。这类问题注重培养学生用动态的观点去看待问题,有利于学生空间想象能力和动手操作能力的锻炼,这类问题的解题关键在于如何“静中取动”或“动中求静”。
平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。这类实体的特点是:结论开放,注重考查学生的猜想、探索能力;便于与其它只是相联系,解题灵活多变,能够考察学生分析问题和解决问题的能力;其中所含的数学思想和方法丰富,有数型结核方程的思想及数字建模,函数的思想,分类讨论的思想方法等。
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。“一定的方向”称为平移方向,“一定的距离”称为平移距离。
篇9:中考数学试卷深度解析
古语云:授人以鱼,只供一饭。授人以渔,则终身受用无穷。学知识,更要学方法。清华网校的学习方法栏目由清华附中名师结合多年教学经验和附中优秀学生学习心得组成,以帮助学生培养良好的学习习惯为目的,使学生在学习中能够事半功倍。
俗话说:“好记性不如烂笔头。”上课时把教师讲的概念、公式和解题技巧记下来,有利于减轻复习负担,提高学习效率。但在实际学习中,不少同学忙于记笔记,没有处理好听、看、记和思的关系,顾此失彼,从而影响学习效果。
误区之一:笔记成了教学实录
有的同学习惯于“教师讲,自己记,复习背,考试模仿”的学习,一节课下来,他们的笔记往往记了几页纸,可以说是教材和教师板书的“映射”,成了教学实录。这些同学过分依赖笔记,忽视老师的讲解,忽视思考,以为老师讲的没有听懂不要紧,只要课后认真看笔记就可以了。殊不知,这样做往往会忽视老师的一些精彩分析,使自己对知识的理解肤浅,增加学习负担,学习效率反而降低,易形成恶性循环。一般来讲,上课要以听讲和思考为主,并简明扼要地把教师讲的思路记下来,课本上叙述详细的地方可以不记或略记。同时,要记下自己的疑问或闪光的思想。如老师讲概念或公式时,主要记知识的发生背景、实例、分析思路、关键的推理步骤、重要结论和注意事项等;对复习讲评课,重点要记解题策略如审题方法、思路分析、最优解法等)以及典型错误与原因剖析,总结思维过程,揭示解题规律。记笔记时,不要把笔记本记满,要留有余地,以便课后反思、整理,这样既可以提高听课效率,又有利于课后有针对性的复习,从而收到事半功倍的效果。
篇10:中考数学试卷深度解析
新一轮 复习备考周期正式开始, 为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《 数学知识点:实数的定义分析》,仅供参考!
实数的定义分析:
1.实数可以分为有理数(如31、
)和无理数(如π、
)两类,或代数数和超越数两类,或正数,负数和零三类。
2.实数集合通常用字母“R”表示。实数可以用来测量连续的量。
3.理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。
4.通常把正实数和零合称为分负数,把负实数和零合称为非正数。
5.任何两个实数之间都有无数个有理数和无理数。
篇11:中考数学试卷深度解析
容易丢分的原因有哪些,下面 小编为学生们详细介绍,一起来看看详细内容吧!
中考数学容易丢分的原因
1.基础知识不扎实
基础知识薄弱往往在成绩中下段的学生身上体现的淋漓尽致。假设一张试卷满分100分,如果咱们考了95分,那么这一条跟你关系不大;如果咱们考了59分,那么你就得好好看看这一条了。
基础知识掌握不扎实,比如不清楚等式的定义(含有等号的式子),认为1=2不是等式,而认为π≈3.14是等式;比如不知道方程的定义(含有未知数的等式),认为x+1=x-1不是方程,因为它没有解;等等。
对策:把要点、重点、难点和 分解而形成自己的知识结构体系,使之烂熟于心,同时将课本后面的练习题弄懂弄通。
2.基本运算掌握差
这个问题是历史遗留问题,如果孩子在小学时候计算能力就一般,初一基本上也会受影响;同时和孩子的习惯有关,有的孩子只要是计算题,就立刻拿出来计算器,噼里啪啦就把题算出来了,有时候计算6乘以9,他都恨不得翻出九九乘法表,而不愿意去开动脑筋运算,长此以往,导致计算能力低下。
对策:熟能生巧,这事没办法,基础打好了,后面就快了。多算多练,或者上个珠心算的辅导班吧,可能 学计算有帮助,但主要还是自己多加练习,尽量少用计算机!
3.实际应用能力差
到了方程和 ,数学就开始和生活结合起来了,架桥修路盖公厕,应有尽有,不应有的也有。联系不到生活,可能学起来比较费劲儿些。
对策:联系实际,注意观察生活中与数学的联系。
4.逻辑推理能力差
许多孩子希望考试能碰见之前做过的题,或者类似之前做过的题的题,甚至希望数据都不要变,只把小明变成小日或者小月,小花变成小化,新题最好不要出,新题型更不能出,因为一旦出了学员容易觉得晕,推理几步之后就不知身在何处了。
对策:只要肯用心总结解题技巧,从基础入手,多练习多总结,一点点地积累,多花点时间做题巩固。
篇12:中考数学试卷深度解析
中考备考:考试后怎么样做试卷分析
考试的功能有两种:检验和选拔。除了中考、高考、竞赛类考试以外,其余几乎都是检验学生对知识的掌握情况,从中发现问题,帮助学生查漏补缺、调整学习方法。所以,考后试卷分析其实是考试的一部分,或者说,与分数的获得相比,考后试卷分析才是真正收获的手段。
第一,分析策略
所谓考后试卷分析,是指考试后订正试卷中出现的错误,分析考试的收获以及考试暴露出的问题,然后归类,逐一进行对照并制订出自我提高的措施与方法。所以,试卷分析要讲究以下四个策略:
1.从逐题分析到整体分析
从每一道错题入手,分析错误的知识原因、能力原因、解题习惯原因等。分析思路是:
①这道题考查的知识点是什么?
②知识点的内容是什么?
③这道题是怎样运用这一知识点解决问题的?
④这道题的解题过程是什么?
⑤这道题还有其他的解法吗?在此基础上,学生就可以进行整体分析,拿出一个总体结论了。
通常情况下,学生考试丢分的原因大体有三种,即知识不清、问题情景不清和表述不清。
所谓“知识不清”,就是在考试之前没有把知识学清楚,丢分发生在考试之前,与考试发挥没有关系。
所谓“问题情景不清”,就是审题不清,没有把问题看明白,或是不能把问题看明白。这是一个审题能力、审题习惯问题。
所谓“表述不清”,指的是虽然知识具备、审题清楚,问题能够解决,但表述凌乱、词不达意。上述问题逐步由低级发展到高级。研究这三者所造成的丢分比例,用数字说话,也就能够得到整体结论,找到整体方向了。
2.从数字分析到性质分析
要点有三:
①统计各科因各种原因的丢分数值。如计算失误失分、审题不清失分、考虑不周失分、公式记错失分、概念不清失分等。
②找出最不该丢的5~10分。这些分数是最有希望获得的,找出来很有必要。在后续学习中,努力找回这些分数可望可即。如果真正做到这些,那么不同学科累计在一起,总分提高也就很可观了。
③任何一处失分,有可能是偶然性失分,也有可能是必然性失分,学生要学会透过现象看本质,找到失分的真正原因。
3.从口头分析到书面分析
在学习过程中,反思十分必要。所谓反思,就是自己和自己对话。这样的对话可能是潜意识的,可能是口头表达,最好书面表达。从潜意识的存在到口头表达是一次进步,从口头表达到书面表达又是一次进步。书面表达是考后试卷分析的最高级形式。所以,建议学生在考试后写出书面的试卷分析。这个分析是反观自己的一面镜子,是以后进步的重要阶梯。
4从归因分析到对策分析
以上分析,都属现象分析,在此基础上,学生就可以进行归因分析和对策分析。三种分析逐层递进:现象分析回答了“什么样”,归因分析回答“为什么”,对策分析回答“怎么办”。对此,学生要首先做到心中有数,下面将做详细探讨。
第二,九字诀
马上写
首先,学生把做错的题重新抄一遍,然后请教老师或同学,详细写出正确过程和答案,主观性试题还应根据老师讲解的解题思路补充齐全。
及时析
时写出对试卷的分析内容,包含以下两步:①综合评价,即哪些题目做得比较好,哪些题目存在失误?②在纠正错题的基础上,对错题进行归类,找准原因,对症下药。
错误原因一般有三种情况:
一、是对教材中的观点、原理理解有误,或理解不广、不深、不透;
二、是对某些题型的解题思路、技巧未能掌握,或不能灵活地加以运用;
三、是表现在答题时的非智力因素方面,如遇到复杂些的论述题,便产生恐惧心理等,从而造成失误。
如果是第一种原因,学生应针对题目所涉及的有关知识要点及原理内容认真地加以复习巩固,真正弄懂弄通,如果是第二种原因,学生应要求自己务必掌握住某一题型的答题要领。
无论是哪一类题型,都有答题思路和方法,但关键是对某一特定试题具体作答的“个性”和“特殊性”,只有细心体会,才会有所感悟和提高。如果是第三种原因,学生应在平时训练中有意识地培养和锻炼自己的良好应试心理素质,努力克服不良心态,在答题时做到从容不迫、沉着冷静。
经常翻
试卷自我分析写完后,和试卷粘贴在一起,要注意保存。积累多了,可以装订成册。千万不要束之高阁,要经常翻阅复习,以达到巩固知识,加强理解,培养能力,掌握规律的目的。
篇13:中考数学试卷深度解析
数学基础和中等难度题占120分,基本功要练好
中考数学主要从以下几个方面进行考查:数与式、方程与不等式、函数、图形的认识、图形与变换、图形与坐标、图形与证明、统计与概率等。中考数学名师吴松岩指出,面对即将到来的中考,考生们应该了解:
1、从中考数学试卷所展现的难易度来看,基础题和中等难度的题总分在120分左右,所以在平时的学习中应该脚踏实地,扎实做好基础知识和基本能力的学习,只有练好基本功,才能在中考数学方面取得理想的成绩。
2、从中考数学学生所犯的主要错误方面来看,主要体现在三个方面:会而不对,对而不全,全而不美。会而不对主要是会做的题没有做对,问题关键在于计算和读题会意两方面;对而不全主要表现在答题格式不完整,多种情况没有考虑清楚;全而不美主要表现在卷面不整洁,随手乱写乱画,字迹符号书写模糊不清,逻辑推理不严谨。
所以,在平时的训练中,考生要及时收集自己的错题难题,对错题要认真分析,找出自己薄弱环节,有意识进行改进;对难题要对照标准答案,找出思维的瓶颈,完善自己的思路,规范答题用语;有意识提高书写整洁度,平时加强学生草稿纸的使用频率,只有草稿纸使用频率高了,计算准确率和解题速度才能上去。
3、通过对多年广州中考的试卷进行分析,建议考生复习可从以下几点进行准备:(1)三态(平移、旋转、折叠)复习常抓不懈;(2)最值、定值和存在性多总结题型,做到熟能生巧;(3)图形割补和辅助线作图技巧总结完善;(4)加强作图能力的培养,提高读题配图能力。
4、结合课改内容,针对新加的内容要加大训练力度,防止知识死角;在平时的学习中,要提高学习效率,增强时间观念。不管是在写作业还是在考试过程中,时刻备一只手表,通过观察题型题量,估算大概需要多少时间,有意识做好时间管理。
特别说明:由于各方面情况的不断调整与变化,查字典中考网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。
篇14:中考数学试卷深度解析
对期末情况分析自己的成绩,发现问题。 网小编整理了学年 考试质量分析总结内容,以供大家参考来分析。
学年九年级数学考试质量分析总结
一、试题情况:本套试卷共四道大题,试题类型全面,难易适中,题量适中。试题涉及了九年级上册所学的内容。考查的知识全面,突出重点,难点。同时也体现对基本概念,基本性质的理解。题型比较贴近 。应该说是一套很优秀的试题。
二、学生答题情况分析
第一大题是选择题,试题难度较小,其中第2小题可见学生对生活了解太少,不知是减小盲区。第3小题学生对视图知识都忘记了。第10小题失分较多,对于格点图形中的练习已练习了很多,但应用起来还是差得太多。
第二大题是填空题。第16小题反比例函数问题错误较多。第17小题,失分较多。学生看见旋转就不会。第18小题视图知识都忘记了,丢分仍多说明学生没有理解,教师加强训练。其他问题还可以。
第三大题是解答题。第19小题解方程,学生答得较好。有个别学生没有作对。第20小题是去年考试的原题,学生完成的较好。但解题的步骤有得待纠正。第21、22小题是练习过很次的题,答得还可以。第23题是一元二次方程的应用题。课本上有类似的问题,学生解决实际问题的能力低。第24题优生做得很好,其他学生没有得分,得分率很低。注意解题步骤的指导。第25小题是一次函数与反比例函数相结合的一题目。此类练习做了一些,学生答得较好。第四大题是附加题。1、2、3两题答得较好。第4小题没有找到规律。
三、改进措施。
1、想办法让学生感受学习数学的作用,提高学生学习的兴趣。
2、课堂上加强对基础知识,基本概念、性质,运算法则的理解,同时加强对基本题型的训练。
3、狠抓教学规范化要求。教师从备课做起,日常教学,作业,测试中对学生存在不规范做法,要及时指出纠正。
4、重视概念、公式定理教学,提高学生的计算能力。进一步做好分层次教学,开展提优补差工作。关注学困生的数学学习,利用课余时间强化知识讲解,让这部分学生真正听懂,学会。
5、加强考试研究。教师收集考试信息,提早渗透,对学生进行有关训练,使学生面对陌生情境,有一个良好的心态,冷静的分析,判断和解决问题上,从而有效得分。
6、加强对综合题型的训练,提高学生分析问题和解决问题的能力。
7、课堂教学中板书不可忽视,让学生不仅听懂,而且会规范的书写。
篇15:中考数学试卷深度解析
中考数学热点:图形运动问题的分析
常见的图形运动有三种:旋转、平移和翻折。运动变化问题正是利用它们变化图形的位置,引起条件或结论的改变,或者把分散的条件集中,以利于解题。这类问题注重培养学生用动态的观点去看待问题,有利于学生空间想象能力和动手操作能力的锻炼,这类问题的解题关键在于如何“静中取动”或“动中求静”。
平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。这类实体的特点是:结论开放,注重考查学生的猜想、探索能力;便于与其它只是相联系,解题灵活多变,能够考察学生分析问题和解决问题的能力;其中所含的数学思想和方法丰富,有数型结核方程的思想及数字建模,函数的思想,分类讨论的思想方法等。
为帮助广大考生把握好平移,旋转和翻折的特征,巧妙利用平移,旋转和翻折的知识来解决相关的问题,下面已近三年上海市毕业考,中考,中考预测卷为例说明其解法,供大家参考。一、平移
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。“一定的方向”称为平移方向,“一定的距离”称为平移距离。
例1在直角坐标平面内,点o为坐标原点,二次函数y=x2(k-5)x-(k4)的图象交x轴于点A(x1,0)点B(x2,0),且(x11)(x21)=8。
(1)求二次函数的解析式(2)将上述二次函数图像沿x轴向右平移两个单位,设平移后的图象与y轴交点为C,顶点为P,求△POC的面积。
分析:抛物线的运动问题只需抓住顶点和开口方向这两个要素的变化规律即可。一般地总是先配方使之成为顶点式后再求解。关于平移的变化规律是:平移—顶点改变(“左加右减,上加下减”),开口不变。
解:⑴由题意知x1,x2方程x2(k-5)x-(k4)=0的根则x1x2=5-kx1.x2=-(k4)由(x11)(x21)=-8即x1x2(x1x2)=-9得-(k4)(5-k)=-9
解k=5则所求二次函数解析式为y=x2-9
⑵由题意,平移后的函数解析式为y=(x-2)2-9则点C的坐标为(0,-5),顶点P的坐标为(2,-9)所以△POC的面积S=×5×2=5二、翻折
翻折是指把一个图形按某一直线翻折180﹤后所形成的新的图形的变化。
关于翻折还有二个基础知识点:
1、一个图形沿一条直线翻折,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就叫做这个图形的对称轴。
2、平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴。解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。
翻折在三大图形运动中是比较重要的,考查得较多。另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。比如毕业考最后一题中函数和几何的综合题中的求定义域的问题,这里的特殊位置实际上就是运动中的一种“静态”要素。
三、旋转在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角。图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
一个图形绕着某一点旋转180°,如果旋转后的图形与原来的图形重合,那么这个图形叫中心对称图形,这个点叫做对称中心。
例2如果一个正方形绕着它的中心旋转后与原图形重合,那么小于360°的一个旋转角是度(毕业考)
解析:此题较为简单,属考查概念的基本题360/5=72,为72度