当前位置: 首页 > 中考数学解题策略与技巧精讲

中考数学解题策略与技巧精讲

篇1:中考数学解题策略与技巧精讲

  中考之战势在必行,升入初三的学子马上要面临中考的挑战。数学备考先要掌握扎实的基础知识,其次掌握熟练的基本技能和在爱钻研的精神,同时也要在考试中有好的心理素质,各方面实力均衡擦能取得好的成绩。下面是小编为大家整理了“XX年中考:中考数学科目答题技巧”,希望对您有所帮助!

  1、迅速摸清“题情”

  刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。

  2、答卷顺序“三先三后”

  在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。在做题的时候我们要遵循“三先三后”的原则。

  首先是“先易后难”。这点很容易理解,就是我们要先做简单题,然后再做复杂题。当全部题目做完之后,如果还有时间,就再回来研究那些难题。当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。也就违背了我们的原意。

  其次是“先高后低”。

  这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。这样能够拿到更多的总得分。并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别慢,所以要尽可能地把这两个问号做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。

  最后是“先同后异”。这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。

  3、做题原则“一快一慢”

  这里所谓的“一快一慢”指的是审题要慢,做题要快。

  题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。有一些条件看起来没有给出,但实际上细致审题你才会发现,这样就可以收集更多的已知信息,为做题正确率寻求保障。

  当思考出解题方法和思路之后,解答问题的时候就一定要简明扼要、快速规范。这样不仅给后面的题目赢得时间,更重要的是在保证踩到得分点上的基础上尽量简化解题步骤,可使得阅卷老师更加清晰地看出你的解题步骤。

  4、把握技巧“分段得分”

  对于中考数学中的难题,并不是说只让成绩优秀的学生拿分而其他学生不得分。实际上,中考数学的大题采取的是“分段给分”的策略。简单说来就是做对一步就给一步的分。这样看来,我们确保会做的题目不丢分,部分理解的题目力争多得分。

篇2:中考数学解题策略与技巧精讲

1、配方法

:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

:换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

:一元二次方程ax2+bx+c=0(a、b、c∈R,a=?0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法:

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。

6、构造法

:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法:

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、等(面或体)积法:

平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。

用归纳法或分析法证明几何题,其困难在添置辅助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法:

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10.客观性题的解题方法:

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。

下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

篇3:中考数学解题策略与技巧精讲

中考数学考试即将拉开帷幕,下面 小编为学生们详细介绍中考数学考试解题技巧,一起来看看详细内容吧!

中考数学解题基本技巧

1.观察与实验

(1)观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。

(2)实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。

2.比较与分类

(1)比较法

是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。

(2)分类的方法

分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中 的k在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。

3.特殊与一般

(1)特殊化的方法

特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。

(2)一般化的方法

4.联想与猜想

(1)类比联想

类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。

通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:

(2)归纳猜想

牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对 的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。

归纳是对同类事物中的所蕴含的同类性或 性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。

5.换元与配方

(1)换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦。

(2)配方法

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次 、 、二次 的讨论与求解。配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式

6.构造法与待定系数法

(1)构造法所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。常见的有构造函数,构造图形,构造恒等式。平面几何里面的添辅助线法就是常见的构造法。构造法解题有:直接构造、变更条件构造和变更结论构造等途径。

(2)待定系数法:将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或 ,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。

7.公式法与反证法

(1)公式法

利用公式解决问题的方法。初中最常用的有 求根时使用求根公式的方法;完全平方公式的方法等。如下面一组题就是完全平方公式的应用:

(2)反证法是“间接证明法”一类,即:肯定题设而否定结论,从而得出矛盾,就可以肯定命题的结论的正确性,从而使命题获得了证明。

篇4:中考数学解题策略与技巧精讲

各类题型的 数学压轴题在近几年的中考中慢慢涌现出来,比如设计新颖、富有创意的,还有以平移、旋转、翻折等图形变换为解题思路的。 压轴题,解题需找好四大切入点。

切入点一:做不出、找相似,有相似、用相似

压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。

切入点二:构造定理所需的图形或基本图形

在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

切入点三:紧扣不变量,并善于使用前题所采用的方法或结论

在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

切入点四:在题目中寻找多解的信息

图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。

总之,中考数学压轴题的切入点有很多,考试时并不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。

篇5:中考数学解题策略与技巧精讲

篇5:中考数学解题策略与技巧精讲

  数学填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题。这说明了填空题是数学中考命题重要的组成部分,它约占了整张试卷的三分之一。因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备。解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整。合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求。

  一、直接法

  这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。

  二、特殊化法

  当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。

  三、数形结合法

  "数缺形时少直观,形缺数时难入微。"数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到"数促形"的目的。对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

  四、等价转化法

  通过"化复杂为简单、化陌生为熟悉",将问题等价地转化成便于解决的问题,从而得出正确的结果。

篇6:中考数学解题策略与技巧精讲

  初一

  几何常常出现在解答题中,但同学们常觉得格式书写让人头疼,不知道考试难度。不要急,练好几何从常见题型入手,培养好分类讨论思想和方程思想,那么初二初三的几何也不用愁!

  解决此类题目的步骤总结如下:

  第一步:审题,见比例设未知数,通常设最短线段为x

  第二步:用含x的式子表示已知长度的线段和所求的线段

  第三步:根据已知长度的线段解出x

  第四步:求得所需线段长。

  初二

  初二是个分水岭,几何与代数势均力敌,对任何一方都不能放松。在此卓小越带大家梳理一遍本学期期末的核心考点和解题秘籍。

  三角形(6-9分)

  核心考点

  1.三角形的边、角计算,内外角关系

  2.多边形内角和

  3.三角形的三线

  解题秘籍

  该部分内容大多以选择填空的形式出现,熟记公式即可,计算时注意需要分类讨论的情况

  全等三角形(20-34分)

  核心考点

  1.全等三角形的性质和判定

  2.角平分线的性质和判定

  解题秘籍

  这部分内容在选择、填空、作图、解答题中均会出现,要牢记全等是一个为了找角或边相等的方法,证明时通常先确定要证什么,再来选择不同的方法。见到角平分线记得辅助线,一作垂直,二作对称,才有线段相等。

  轴对称(20-35分)

  核心考点

  1.   轴对称的图形以及性质

  2.   垂直平分线的性质以及判定

  3.   最短路径问题

  4.   等腰三角形及等边三角形

  解题秘籍

  这部分内容可能会在选择、填空、作图、解答题考查大家。见到垂直平分线,记得连垂直平分线上的点和两端点,才有线段相等。最短路径记得作对称。等边三角形判定的方法:一是三边相等,二是两个角为60°,三是一个角为60°+等腰三角形。

  整式乘法(8-24分)

  核心考点

  1.同底数幂乘法、幂的乘方、积的乘方、同底数幂除法

  2.单项式乘单项式、单项式乘多项式、多项式乘多项式

  3.乘法公式:平方差公式与完全平方公式

  解题秘籍:整式乘法部分各区期末考主要在选择题和填空题考察学生对同底数幂相应公式和平方差公式、完全平方公式的运用和逆用。考得稍难则会加上整体法和换元法的考察。对于这一部分,同学们必须牢记公式,熟练运用!

  因式分解(8-20分)

  核心考点:提公因式法、套公式法和十字相乘法

  解题秘籍:乍一看因式分解在各区的期末分值没有整式乘法这么高,但因式分解恰恰是学习分式,进行分式基本运算的基础。各区期末考除了单独对因式分解的三个方法:一提、二套、三十字三个方法进行考察之外,更重要的是考察分式运算中对因式分解的运用!

  分式(23-49分)

  核心考点:分式有无意义、分式值为0、分式最简公分母、分式运算、分式方程、分式方程的应用

  解题秘籍:从各区的期末分值中不难看出,分式是各区期末中占分非常大的一个考察版块,单选、填空和大题都会出现。其中对分式意义、值为0等的考察相对容易,而分式的运算往往极容易失分。

  初三

  本学期期末考作为初中时期最后一个寒假前的大型考试,考题基本涵盖了九年级上下册学习的所有知识点,甚至进度快的学校很可能包含三年的知识点内容。

  1、一元二次方程与二次函数(10-35分)

  代数问题一般以一元二次方程和二次函数为主题,其他知识点会以辅助的形式出现。方程的解法通常以简单解答题的方式考察,后面的大题通常会结合根的判别式、整数根和抛物线等内容进行考察。

  2、多种函数交叉综合问题(5-25分)

  三种函数:一次函数、反比例函数、二次函数。常常考察一次与反比例结合问题(中档题),二次函数与一次函数结合问题(代数压轴题)。

  二次函数的压轴题,可以说是难倒一片“英雄好汉”了,谨记压轴题的小技巧,注意前一二问对于第三问的启发作用。

  3、三角形的相似、圆切线证明以及相关计算(20-45分)

  三角形相似的几种常考模型包括平移形、旋转型、母子型、双垂直型、一线三等角型等。圆的难点在于切线的计算,涵盖知识点比较多,如相似三角形、垂径定理、圆周角有关定理等。

篇7:中考数学解题策略与技巧精讲

把一分钟当做十分钟来用,提高效率复习。教育小编整理了中考数学压轴题解题技巧内容,以供大家参考。

中考数学压轴题解题技巧

1.学会运用 与方程思想。

从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或 的数学模型,从而使问题得到解决的思维方法,这就是方程思想。

用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。

2.学会运用数形结合思想。

数形结合思想是指从几何直观的角度,利用 的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合 思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

纵观近几年全国各地的中考压轴题,绝大部分都是与 有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

3.要学会抢得分点。

一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到 ;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

4.学会运用等价转换思想。

转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。

中考压轴题所考察的并非孤立的 ,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的 ,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

5.学会运用分类讨论的思想。

分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏

篇8:中考数学解题策略与技巧精讲

  切入点一:构造定理所需的图形或基本图形

  在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

  切入点二:做不出、找相似,有相似、用相似

  压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。

  切入点三:紧扣不变量,并善于使用前题所采用的方法或结论

  在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

  切入点四:在题目中寻找多解的信息

  图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。

  总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。

篇9:中考数学解题策略与技巧精讲

篇9:中考数学解题策略与技巧精讲

填空题解题技巧

  一、填空题特点分析

  与选择题同属客观性试题的填空题,具有客观性试题的所有特点,即题目短小精干,考查目标集中明确,答案唯一正确,答卷方式简便,评分客观公正等。但是它又有本身的特点,即没有备选答案可供选择,这就避免了选择项所起的暗示或干扰的作用,及考生存在的瞎估乱猜的侥幸心理,从这个角度看,它能够比较真实地考查出学生的真正水平。考查内容多是“双基”方面,知识复盖面广。但在考查同样内容时,难度一般比择题略大。

  二、主要题型

  初中填空题主要题型一是定量型填空题,主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度;二是定性型填空题,考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。当然这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度只不过是考查有所侧重而已。

  填空题一般是一道题填一个空格,当然个别省市也有例外。江西省还出了一道“先阅读,后填空”的试题,它首先列举了30名学生的数学成绩,给出频率分布表,然后要求考生回答六小道填空题,这也可以说是一种新题型。

  这种先阅读一段短文,在理解的基础上,要求解答有关的问题,是近年悄然兴起的阅读理解题。它不仅考查了学生阅读理解和整理知识的能力,同时提醒考生平时要克服读书囫囵吞枣、不求甚解的不良习惯。这种新题型的出现,无疑给填空题较寂静的湖面投了一个小石子。

  三、九大基本解法:直接法,特例法,数形结合法,猜想法,整体法,构造法,图解法,等价转化法,观察法。

  四、认真作答,减少失误

  填空题虽然多是中低档题,但不少考生在答题时往往出现失误,这是要引起足够重视的。

  首先,应按题干的要求填空,如有时填空题对结论有一些附加条件,如用具体数字作答,精确到…等,有些考生对此不加注意,而出现失误,这是很可惜的。

  例13.一个圆柱的底面半径为1米,它的高为2米,则这个圆柱的侧面积为平方米。(精确到0.1平方米)。

  有的考生直接把求出的4π作为结果而致错误,正确答案应当是12.6。其次,若题干没有附加条件,则按具体情况与常规解题。

  第二,应认真分析题目的隐含条件。

  例14.等腰三角形的一边等于4,一边等于9,则它的周长等于___。

  个别考生认为9和4都可以作为腰长,而出现两个答案22和17,这是他们忽视了“三角形二边之和应大于第三边”这个隐含条件,应填22。

  总之,填空题与选择题一样,因为它不要求写出解题过程,直接写出最后结果。

  因此,不填、多填、填错、仅部分填对,严格来说,都计零分。

  虽然近二年各省市初中填空题,难度都不大,但得分率却不理想,因此,同学们要“双基”扎实,强化训练,提高解题能力,才能既准又快解题。

  另一方面,加强对填空题的分析研究,掌握其特点及解题方法,减少失误。

  这样,同学们就可以通过有限道题的学习,培养起无限道题的数学机智。

篇10:中考数学解题策略与技巧精讲

解题技巧复习要点

1、选题

① 具有良好的教学导向功能,既引导学生学会学习,乐于科学探究,乐于在生活中用数学;又引导我们数学教师积极投身到数学课程改革中去,努力改进 教学,研究如何按照中考试题的要求把握平时练习、复习。

②“试题源于课本”已成为历年中考的命题原则,具有良好的导向作用。因此在最后的复习阶段可以对课本的例、习题或者一些经典的历年试题在认真研究的基础上加以变式再创造,在复习教学中开展陈题新解,以一题多解、一题多变、多题一解等的形式将知识串联,方法归纳,以少胜多,提高学生的解题能力。

2、学生的解题策略

在每一次的考试中,我们都会发现有部分基础较好的学生对于压轴题的解答得分率也不高,认真分析、究其原因主要是会而不对,对而不全,全而不美的问题。因此应该让学生向错误学习,放手让学生自己去搞点讲评,建立错题档案,对于错的题目进行反复训练。对于综合性的压轴题,让学生总结题目考查了哪些知识点,每个知识点是从哪个角度考查的,切实解决会而不对,对而不全,全而不美的问题。

3、学生书写的规范性

每次考试之后总会发现:有部分学生在解最后一题的压轴题时,解题步骤不规范,导致失分;甚至由于第1小题书写不规范,导致自己在做后面的小题时,抄错而不得分。因此我们在平时的教学中要讲清楚每一题中每一步的评分标准,要舍得时间让学生在课堂上把一道题解答完整,并认真批改,及时纠错;而最重要的就是要严格要求每一次作业中的书写过程,认为不过关的坚决要求重写,慢慢养成习惯。杜绝平时因时间不够而重答案轻过程。

篇11:中考数学解题策略与技巧精讲

1、仔细审题争取“一遍成” 拿到试卷后,先要通览,摸透题情。一是看题量多少,有无印刷问题;二是对通篇试卷的难易做粗略的了解。审题要逐字逐句搞清题意,似曾相识的题目更要注意异同,从多层面挖掘隐含条件及条件间内在联系。吃透题意,例如:“两圆相切”,就包括外切和内切,缺一不可。 的考题是由易到难,顺利解答几个简单题目,可以使考生信心倍增。从近年来 卷面来看,考试时间很紧张,考生几乎没有时间检查,这就要求在答卷时认真准确,争取“一遍成”。 2、遇到难题要敢于暂时“放弃” 遇到难题要敢于暂时“放弃”,不要浪费太多时间。一般来说,选择和填空题,优秀考生答每道题的时间不超过40秒,差一点的考生不超过2分钟。把会做的题目解答完后,再回头集中精力解决难题。如去年20题就比27、28题要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”。 3、电脑阅卷书写要工整 卷面书写既要速度快,又要整洁、准确。电脑阅卷要求考生填涂答题卡准确,字迹工整,大题步骤明晰。草稿纸书写要有规划,便于回头检查。不少计算题的失误,都是因为书写太潦草。正确的做法是:在题卡上列出详细的步骤,不要跳步。只有少量数学运算才用草纸。 事实证明:踏实地完成每步运算,解题速度就快;把每个会做的题目做对,考分就高。 4、三大方法答选择题 答选择题可用三大方法。排除法:根据题设和有关知识,排除明显不正确选项。特殊值法:根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件。猜想、测量的方法:直接观察或得出结果。这类方法在近年来的中考题中常被运用于探索规律性的问题。 5、直接法和图解法答填空题 直接法和图解法是填空题的基本解法。 直接法:根据题干所给条件,直接计算、推理,得出正确答案; 图解法:根据题干提供信息,绘出图形,从而得出正确的答案。 填空题虽然多是中低档题,但不少考生在答题时往往出现失误。填空题的19、20题都是精心构思的新题目。首先,应按题干的要求填空,如一些附加条件,如精确到哪一位,有无单位。再者应认真分析题目的隐含条件。填空题不要求写出解题过程,填错、部分填对都将计零分。 6、注意21-26题解题过程 靠准确完整的数学语言表述,才能避免出现“会而不对”“对而不全”的情况。代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分会少得可怜。“心中有数”却说不清楚,扣分者也不在少数。 21题应注意三步:化简正确、体现三角函数值、代值过程;22题注意是否画在格点上;23题证明步骤一定完整;24题用到三角函数一定准确;25题分析好图表,关键性步骤不能缺少;26题注意有无相等关系。

篇12:中考数学解题策略与技巧精讲

  1.数形结合思想

  就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  2.联系与转化的思想

  事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

  在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  3.分类讨论的思想

  在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4.待定系数法

  当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5.配方法

  就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6.换元法

  在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7.分析法

  在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8.综合法

  在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9.演绎法

  由一般到特殊的推理方法。

  10.归纳法

  由一般到特殊的推理方法。

  11.类比法

  众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。

  函数、方程、不等式

  常用的数学思想方法:

  ⑴数形结合的思想方法。

  ⑵待定系数法。

  ⑶配方法。

  ⑷联系与转化的思想。

  ⑸图像的平移变换。

  证明角的相等

  1.对顶角相等。

  2.角(或同角)的补角相等或余角相等。

  3.两直线平行,同位角相等、内错角相等。

  4.凡直角都相等。

  5.角平分线分得的两个角相等。

  6.同一个三角形中,等边对等角。

  7.等腰三角形中,底边上的高(或中线)平分顶角。

  8.平行四边形的对角相等。

  9.菱形的每一条对角线平分一组对角。

  10.等腰梯形同一底上的两个角相等。

  11.关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。

  12.圆内接四边形的任何一个外角都等于它的内对角。

  13.同弧或等弧所对的圆周角相等。

  14.弦切角等于它所夹的弧对的圆周角。

  15.同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

  16.全等三角形的对应角相等。

  17.相似三角形的对应角相等。

  18.利用等量代换。

  19.利用代数或三角计算出角的度数相等

  20.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。

  证明直线的平行或垂直

  1.证明两条直线平行的主要依据和方法

  ⑴定义、在同一平面内不相交的两条直线平行。

  ⑵平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。

  ⑶平行线的判定:同位角相等(内错角或同旁内角),两直线平行。

  ⑷平行四边形的对边平行。

  ⑸梯形的两底平行。

  ⑹三角形(或梯形)的中位线平行与第三边(或两底)

  ⑺一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。

  2.证明两条直线垂直的主要依据和方法

  ⑴两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。

  ⑵直角三角形的两直角边互相垂直。

  ⑶三角形的两个锐角互余,则第三个内角为直角。

  ⑷三角形一边的中线等于这边的一半,则这个三角形为直角三角形。

  ⑸三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。

  ⑹三角形(或多边形)一边上的高垂直于这边。

  ⑺等腰三角形的顶角平分线(或底边上的中线)垂直于底边。

  ⑻矩形的两临边互相垂直。

  ⑼菱形的对角线互相垂直。

  ⑽平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。

  ⑾半圆或直径所对的圆周角是直角。

  ⑿圆的切线垂直于过切点的半径。

  ⒀相交两圆的连心线垂直于两圆的公共弦。

篇13:中考数学解题策略与技巧精讲

篇13:中考数学解题策略与技巧精讲

中考数学:易错点总结及解题技巧

  一、数与式

  1.有理数、无理数以及实数的有关概念理解不清,分数的相反数、倒数易错,绝对值的意义易混淆。这样的题通常是选择第一题,简单易马虎。

  2.实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者运算律使用不合理,从而使运算出现错误。

  3.平方根、算术平方根、立方根的区别;注意负数没有平方根和算术平方根;立方根只有一个;理解最简二次根式的概念。

  4.分解因式时,能提公因式一定要先提公因式,注意首相有负号的一定要把负号连同公因式一起提出来。填空题必考

  5.求取值范围的:三点:1)分母不为0;2)根号里不能为负数;3)a的0次幂,a一定不能为0.填空题必考

  6.求分式值为零时一定要注意分母不能为零。

  7.分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,化简结果必须为最简分式。

  8.非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

  7.计算必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简,分式化简(见第7条),分式化简完代数求值时,一定要注意不能使分母为0。

  8.科学记数法。精确度,有效数字。选择或填空必考。

  二、方程(组)与不等式(组)

  1.各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

  2.运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。

  3.运用不等式的性质3时,两边都乘或除以一个负数时不等号方向要改变、要改变、要改变。重要的事情说三遍。

  4.关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

  5.关于一元一次不等式组有解无解的条件易忽视相等的情况。

  6.解分式方程时首要步骤去分母,分数相相当于括号,易忘记检验根是否使分母为0,导致运算结果出错。

  7.不等式(组)的解要先确定解集,确定解集的方法运用数轴。

  8.利用函数图象求不等式的解集和方程的解。

  9.分式方程应用题列式解完一定要检验,要检验,要检验。这一步骤必须要写出来的。

  三、函数

  1.各个待定系数表示的的意义。

  2.熟练掌握各种函数解析式的求法,有几个的待定系数就要代几个点的坐标,即列几个式子。

  3.利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

  4.两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。

  5.与坐标轴交点坐标一定要会求。面积最大值的求解方法,两线段和最小值的求解方法,距离之差最大值的求解方法。

  6.数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

  7.自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0。

  四、三角形

  1.三角形的概念以及三角形的角平分线,中线,高线的特征与区别。

  2.三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。

  3.三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。

  4.全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。边边角两个三角形不一定全等。

  5.两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。

  6.等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。

  7.等腰三角形三线合一的性质一定要注意是底边上的高,底边上的中线,顶角平分线互相重合。等边三角形也一定要注意是同一边上的高和中线及所对顶角的平分线互相重合。

  8.运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。

  9.中点,中线,中位线,一半定理的归纳以及各自的性质。

  10.直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)。

  11.三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。

  12.会用等积法求线段长

  13.通常问两条线段之间的关系时,有倍比关系,如果是2倍或二分之一的关系时通常用到以下三条定理:

  三角形中位线平行且等于第三边的一半

  直角三角形斜边中线等于斜边一半

  在直角三角形中30°所对的直角边是斜边的一半

  14.如果问到三条线段的关系时通常是和差关系或勾股定理。

篇14:中考数学解题策略与技巧精讲

中考数学冲刺辅导:压轴题解题技巧

  数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。

  函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

  几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。

  解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。

  一是运用函数与方程思想。以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。

  二是运用分类讨论的思想。对问题的条件或结论的多变性进行考察和探究。

  三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。

  解中考压轴题技能技巧:

  一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

  二是解数学压轴题做一问是一问。第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。

  三是解数学压轴题一般可以分为三个步骤。认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。

  中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。所以,解数学压轴题,一要树立必胜的信心,要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。

篇15:中考数学解题策略与技巧精讲

初中数学应用题大致可分四类:纯文型(全部用文字展示条件和问题)、图文型(用文字和图形结合展示条件和问题)、表文型(用文字和表格结合展示条件和问题)、改错型(条件、问题、解题过程都已展示,但解题过程可能要改正)。无论哪种类型,其解题步骤一般都可分为以下几步:

一、快速阅读,把握大意

在阅读时不仅要特别留心短文中的事件情景、具体数据、关键语句等细节,还要注意问题的提出方式。据此估计是我们平常练习时的哪种类型,会涉及到哪些知识,一般是如何解决的,在头脑中建立初步印象。

二、仔细阅读,提炼信息

在阅读过程中不仅要注意各个关键数据,还要注意各数据的内在联系、标明单位,特别是一些特殊条件(如附加公式),以简明的方式列出各量的关系,提炼信息,读"薄";题目,同时还要能回到原题中去。

三、总结信息,建立数模

根据前面提炼的信息分析,通过文中关键词、句的提示作用,选用恰当的数学模型,例如由"大于、超过、不足

版权声明:此文版权归原作者所有,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

热门文章

合理支配时间的能力

合理支配时间的能力对于中学生健康成长的重要性。文章提出,时间对每个人都是公平的,但如何有效利用时间却因人而异。一些同学可能学习效率不高,而另一些同学则能在保持良好学习成绩的同时,享受充分的娱乐时间。这其中的关键在于如何科学合理地安排时间。文章介绍了几

2025-03-19

最新文章

奥数:全球升学竞争的试金石与数学学习的核心

全球范围内奥数在升学竞争中的地位和作用。不同国家的学生对奥数的重视程度不同,但普遍认为通过不断做题可以提高数学水平。数学作为严谨和深邃的学科,要求学生具备扎实的基础知识和解题技巧。奥数竞赛不仅衡量学生的数学能力,更是激发他们兴趣和动力的源泉。各国教育

2025-04-23

Copyright © 2024 ~ 2025 易中考

京ICP备10209629号-24

北京九天揽月科技有限公司